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FOREWORD

The formal purpose of this report is to address the
Si:atemeut of Work of Contract No. F49620-84-C-0045. Considerable
sdditional effort has been expended im Section I to provide a
comprehensive presentation of our most recent theoretical resalts
in electromagnetic scattering and absorption. Since this work
encompasses over 20 years of effort (see for example, N.E.
Pedersen, J.C. Pedersen, H.A. Bothe, ''A New MHethod of Radar
Target Concealment, ' Proc, Tri~-Services Radar Symposium, San
Diego, 1969), it has not been possible to inciude many topics,

such as comparison of backscatter predictions with experimental
results.

In Section II we address the guestion of electrieragnetic
absorption and subsequent thermal rasdiatiom by very small
particles. As in Section I, we Lave attempted to provide a
ooriprahen:ive treatment of this subiect. The material preseanted,
together with that in the cited reforences, pormits the solution
of a wide range of related problems.

During the course of the program, a Hewvlett Packard MNodel
9000/520 computer was provided by AFOSR. VWithout the use of this
fast machine, a large fraction of the computations presented
herein would not have been possible. It is presemtly being usecd
in conjunction with other DoD programs, inoluding AFOSR. Ve axe
very grateful for ihis contribution by AFOSR, amnd believe that it
has contributed greatly to DoD and to our ultimate understanding
of many of the phenomena with which we have been doaling.
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SRCYION I. RLECTROMAGNETIC TERORY

1.1 Iatredsetion

The grouwndwork for the problem of scatteriag of electro-
magaotic waves by thim wires was laid by Pockliagtoml, and later
Inll‘nz. who developed the governing iategral equations. Iz
1947, the classic paper of Vamn Vlieck, Bloch and Bamermesh
presented exteasive results for backscattering by perfeoctly
comnducting wires, using Hallen's OQllthI.a Shortly after that,
a8 variational method based om Pocklington's equatioa was
descrided by Tai4, yielding results for the most part in
agreoement vwith those of Vaan Vlieck et al. The variationmal
techunique was later extended to wvires of fimite copductivity bdy
Cassedy aad Faiaberyg, although they contimued to comsider onmly

backscattering at normal incidence.3

In related work, s numerically-oriented solution of the
Pocklington equation was carried out by Richmori for both
perfectly oondnotln;‘ and flaitc-conductivity7 vires. A simjlar
approach was taken by Medgyesi-Mitsochsng and EBftimiun,.® Applic-
ability of a Wiener-Hopf techmique was shova by Chen.? An
interesting approach in terms of outgoing and reflected waves has
been given by Shen, Wu and King, although oaly limited results
are availabls. 10 Curved wires bhave also been considered, the
circular loop by Kouyoumjiamll sud the more gemeral rasc by

Mei .12 A good review of the literature is given by Eimarsson, 13

The present authors bave studied this problem in a series of
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30 the varistioaal method, so that the work can bes regarded as
an oxteansion of the work of Tai? and Cassedy and Faindergd to
inolude bdoth finite comductivity snd arbitrary angle of
ineidence. BRovever, we find it more conveajeat to derive the
basioc equations ia the coatezt of Galerkin's method, whiocdk Jonmes

has showva to be ezactly equivaleant.}*

Diffezontial scattering patteras are thea computed, aloag
with the scattering, absorption amd extinmction, These cross
sectioas are obtainmed by integratiag the normal compomeant of the
Poyating vector over the surface of the fiber, enablimg wus to
avoid the iategzation over the fezr-field aphere usually employed
to oompwte scattering. Ia additioa, we find that energy
considerations are exactly satisfied: the extinction cross
section, which by the optical theorem must equal the imcgiaary
part of the forward amplitude, is ideatically equal to the sum of
the absorption and scattering cross sections. This zesult is
partiocularly valuable for those applications im which we study
the scattering ard absorption properties of a cloud of such fiber

particles.

Because of the approximate nature of the variational
approach, it is important to back up the recults by independent
computations wherevor possible, in addition to comparison with
existing results. In the Rayleigh region, where fiber length is
small compared to wavelength, electrostatic oomsiderations wonld
be exzpected to dominate. A quasistatic model is developed and
chocked against variational results. At high freguencies, on the
other hand, the absorption cross section per unit length must

2




approach that of the infinitrily long fiber. This latter gquantity

is compuicd, and agreement is seem to be gouod.

This work was originally begun for applications in the
microwave region. In order that the computations may be extemded
into the infrared and visible regimes, it is vital to incorporate
the optical properties of the fibers. We do this for applicable
materials by employing the Drude model for conductivity (or
complex dielectric constant), and include as well the dependeace
of conductivity on both fiber diameter and electron mean free

path.




1.2 Theory

Consider the thin conductive fiber of radius a and half-
length h, as shown in Fig. 1-1, ha-ing length to diasmeter ratio
h/a >> 1. An electromagnetic wave is incident along a dit#ction
making an angle O; with the positive z-axis, as shown, and we
suppose that the fiber radius is very small compared to incident
wavelength, i.e. ka <({ 1, so that the rosultant scattered wave

has rotational symmetry.

With time—~dependence factor exp(—-iwt) suppressed, the

problem is described by the integral eqnationl’ 2, 4,3

+h
ngI(z) = E; sin 04 eikz cos 03 (ikno/4n).f dz' I(z') K(z',z). (1-1)
-h

The left hand side of this equation expresses the axial componment
of the E-vector along the surface of the fiber in terms of an

induced line current I (2z) (equal to 2na times the induced

surface current) and a surface impednncez' 5,13
tiop JO (xa)
= ——— (1-2)
s Inxa T; (xa) °
where
x = (wlps + impu)llz (1-3)

is the compivy propagation constant withim the fiber (wo will
assume free-space permeability, however) and Jg, J; are Bessel

functions. It is also tacitly assumed that Ix/x12 5> 1, so that

TR NN T KK LS T D LSO XN A A2 DA DR A



radial variations of the ficlds within the fiber are much more
rapid than axial ounes. The first term oa the right hand side of
Bq. (1-1) is simply the axial coaponenat of the incidemnt E field.
Finally, the integral term gives the E field comtribution due to

the induced current, where the kernel is given by

n

K (2',2) = (1 + 92/x23:%) (1/21) [z 40" (1/R) o1FR, (1-4a)
0

R2 = (2-2')2 + 4a2 sin2 (0'/2). (1-4b)

The current is now written as a linear combination of the
trial functions

+ikz . +ikz cos Oi. (1-5)

Note that the first two of these represent resonmant curreats that
can exist on the infinite, perfectly conducting fiber with no
external field presentl, and should continue to be appropriate
for moderats to large conductivity. The term exp (ikz cos 0;)
gives precisely the forced response of the infinite fiber
regardless of the value of conductivity. Finally, the tezm

exp (-ikz cos 0j) is ircluded so that the trial fmunctions ocan

satisfv the boundary comditioa

I (+1) =0 (1-6)




of vanishing current ac¢ the ends of the fiber and still maimntain

some flaxidility.

Followixg this prescriptioa, the surface current takes the

form

I(z) = ag £4(z) + 5y f5(2)

Y = 84 [ooc kz cos (kh cos 63) - cos kh cos (kx cos 6;)]

+ 85 {sin kz sin (kh cos 6;) - sir kh sim (kz cos 0;i]. {(1-7)
In order to Jdetermine the coefficients by the Galerkin

*. method, first substitute Eq. (1-7) inmto Eq. (1-1), thea muitiply

separately by f,(2) and fo(x) and integrate over fiber length.

From the two resulting equations one finds that

c =¢, o (even, odd) (1-8)

in terms of the (dimensionless) quantities

+h
8¢ = k sin 01‘/. dz fg4(1z) glkz ccs By

+h 2
g = -4ni (n'/qo)f dx £_(z)
Y
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B ' |
®
+h +b
| Yo = kf dz fg(z) f dz'fqa(z') K(2',2) (1-9)
? -k -h
®
for ¢ = o, o.
All of these integra’3s can be evalunated anmalytically under the
!
ﬂ[ approximation ka (¢ 1; the results are rether lengthy and we do

not give then here. Note that some of thess exprsssioms were

svaluated by Tai, for a somevhat 3impler kornol." 13

As noted
sarlier, tho variaticnel procedure used Dby Tai4, as well as

Cassedy and Faianber3S, would give ldentical results.l4d

The scosttered ficld can now be exprecssed as an integral of

the induced current, For far-fiocld scattering in the O0-direction

(see Fig. 1-1) one hasls

E, = 0 E; (1/ke) ¢ %% 8(04,0), {1-10)

with far-field amplitude given by

+h -
S (8;, 6) = (kng/E;) sin ef dz I(z) o 1kz ©c080 (1 4))

-b

For the differential (or bistatic) cross section one has

og = (4n/x2) | s (0,4,0) |2, (1-12)

and similarly the backscattering or radur cross sectioun is given

ty (again see Fig. 1-1)
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Figure 1-1,

2w +h J Eo

-y

Geometzry is shown for a conducting fiber of length
2h and diametor 2a.



op = (4n/x2) | s(e;,x-05) [2. (1-13)

The remaining oross sections are most easily ccmputed by
jatsgrating the normal componeat of the Poyatimg vector over the
f£iber surface, neglecting end surface contributions, For the

scattered power one has

.
Re I dg . (Esx !.). (1-14)

[ ]

We are interested only in effects due to the z—component of E,,
vhioch is assumed independent of azimuth P decause ka << 1.
Conseguently, only the f#-component of 58 is needed, and becauss
the incident magnetic field Hy varies as cos ® it will aot
contribute to the surface integral. VWe caa thus replace El by g

= H; + Hg. If E45 is also replaced by E - Ej, then Eq. (1~14)

becomes

v, = % n..’cg - (E x B%) - % R.J.ag - (B 2 B%). (1-15)

—~ -~

The first term on the right haud side gives total power flow into
the fiber, and hence is the negative of the absorded power. The
second term is proportiomal to the real part of the forward
smplitude, or the extinction cross sectivn o,. Dividing each
tezm by the incident energy flux density 302/2n° to get cross

sectioas, Eq. (1~15) beocomes

0o = (4n/k2) Re 8 (8;, 0§) = a4 + 0,, (1-16)




whieh ia the optical theorem identifyiag the extimctioam ocross
svotion 'fth the sum of the soitteriag and adbsorptica cross

sections.

From Bq. (1-14), again subdstitutiag tor N, as bdefore (bat

29t Bg) aad nozmsliziag. oae jets

P (no/n:) n.jas - (Bg x !‘).

How

a8 + (Bq x B*) = (s a0d1) (B,)_ P

where (E )z is given by the iztegral term of Bq. (1-1), aad
Hg® = (1/2xa) I%(2).

Putting everything together, aad makiag use of Bq. (1-8),
the result is:

Gg = = In 'g 2 + 'g zr
s 3 Y ol (1-17m)
x Yo ~ X To ~ 2o

One proceeds similarly with the first term oa the right hand
side of Bq. (1-15) to obtain the absorption cross sectioa, moting

that B; = g4 I(z), to get

(1-18)

Og = 1; Im s ) 8, °
x Te = Ae To =~ %o

Finally, ia order to show explicitly that the extinotion oross
section is the sum of these last two expressions, note that the

integrand in the last term of Eq. (1-15) may be written

10
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68 - (B 2 E®) = (a d0dz) By sin 0, o1F% %90 81 (3/954)1° (2).

Frem Bq. (1-9)., the z-iantegratioan is seea to iavoive ouly the g5, and

with minozr effort one gets

2 2
8 (ke = vo) + s, ho = 7e)| | (1-19)
Yo — Ao Yo = Ao

which by ingspection is the sum of RBqs. (1-17) aad (1-18).

For loag fiders, a useful checx i3 provided by computing the
abscrption cross ssctiom resultiag from the infiaite fibdber
solution. Agaia integrating the total fielid Poyatiag veoctor over
the latersul surface 4xah of the fider, uwsing ezact field

16

quaatities as givena by Vait, the rotatioaally syametric portion

of ths field contridutes

Ga = - Mo | Ag/B; 12 Re [(ix/wpgy) g (xa) Jy (xa)] 4xadr (1-20a)

whoere in the limit of interest to wus

Bi sia 9j/Ay =], (xa)
ka <¢( 1

+ 8ia2 0; [1a (ka sin 03/2) + y + in/2]) xaJi (xa) (1-290)

with vy = 0.5772 ... (Bulezr's constant). Comperisoans usiag thuso

formulas will be showa bdelow,

11




1.3 Qussistatie Redol
At low fraquemcies for which fiber dimenszioas sre small
oonpured with vaveleagth, an electrostatic treatmeat i3
approprinte. The eleotx o field B inside the fiber, roegacrded as
a Rayleigh pazticle, may b2 writtea

B = B, - L4wP, (1-21)

where L is the depolaricsiang factor, P is the polarizatioa, and B,

the homogseneous applied field alomg the axis. In the case of a

loag, thin spheroid, which should be a good epproximatiom to the

fiber in the present circumstanoces, the depolarizing faoctor is

L = (a/h)2 [1a (2h/a) -11. (1-22)

The polarizstion is Jefined as

2= (1/4a) (s-1) E, (1-23)

where ¢ i3 acw the relative dielectric comstant (normalixzed by
dividing by s,). From Eqs. (1-21) «nd (1-23) ome haz for th»s
internal fielid

E = g,
i +L (e=1) °* (1-24)

12
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and if s i3 takea to be complex, d.¢., ¢ = g' + ', then

1 +L (e'=1) - iLs"
i I+ L (¢'-2)J% + (Le'' ) 2 ] '

i = B (1-25)

Note that im the guasistatic approximatiom there is bdoth an in-

phase aud a gquadrature compoaent of the intermal field.

The electric dipole moment of the partiocle is defined as

) - PV’. (1"2‘)

whese V, is particle volume; the po.arizability a is then defined

in terms of the dipole moment by

Pp=aB; . (1-27)

From the precediang equatioas the desired expressioa for

polnri:ubil}ty is given by

v
e = _.P (e'-1) [1+L (e'-1)) + Le" 2 + g )
[ f1 + L (3'-—15'1 + (Le" )2 - 1. (1-28)

The absorption and scattering cross sections are simply expressed

in terms of a; one has, respectively,

ggq = 45k Inm a, (1-29)

oa = (8n/3) k4 lai2, (1-30)

13
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Theas: equatioas have good theoretical justification within
the zamge kb { x/2. hem kh exceeds this limit, the effective
value of the depolarizizmy faotor in Bq. (1-22) is reduced. This
is bdescawse the dipole field due to the imduced charges at the
ends of the particlz is 2o longer strictly = ouwt of phase with
the applied field. Ia order to teke this discrepancy into

account, we have doevised a modified depolarixing faoctor givea bdy

2 )
L = [(f) + 52) ] [l.n (f) -1] . (1-31)

At wavelengths for which kh > =, the depolarizing factor
imcreases as k3, This is consistent with our Tfeasoming regarding
the high frequeancy bdehavior of the imocokhereace of thoe
depolariziag field. It is becamwse of the imolusion of RBq. (1-31)
that we roefer to this theory as our Exteaded Quasistatic (BQS)
thesozry. Ve should mote that the factor (1/x) appeariag is Bi.
(1-831) was srrived at throsgh maay comparisoans bdetweea the RQS
and the Variatioaal technigue discussed ia the previous

subsection.

Although the above (BG3) theory is oanly approximate, it has
the very uwselul properties of being simple and gpajyvytie. It can,
therefore, be used to provide reassoaudle approximate predictions
for ocases of imterest. However, swch prediotions (especially in
the regime kh > 1) should bde ultimately refinmed using the
variational techmignue. Comparative results will be shown

subsequently in this report.

14
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1.4 Tho Drande Medel

In oxder to aspply the abdbove results to the infrared and
visible regions, as well as the microweve case, it is aecessary
to daild ia the optical dehavior of the fibdeor., In this and the
folloviag seoction we deal with (1) the imclusioa of the optical
properties, amd (2) imoclasioa of the depeandence of electriocal
conduotivity upom partiocle radius and electron mean free path, in
both the Galerzkisn and guasiscatic modelys.

Ia a receat paper by Ordal ot 11.17. the appliocation of the
Dzude model for the predictioa of ocomplex optical dielectzic
constant was compared with reasurod valwes of the real and
imaginazy parts of the optiocal diclectric comstaat for a aummber
of metals (Al, Cu, Aw, Pb, Ag, sad V). Tadbular exzperimental
results were alsu givenm for PFe, Pt, Co, Ni, Ti and P4. T‘io
model, which is based oa the frees electrom theory of metals, is
ia surprisiagly good agreement with the obeerved esxperimontal
results. We realize that, for certaia transition elements such
as Fe, the model has drawbdacks. For such cases, oae¢ must resort

to the use of tabular experimeatal data.

For our preseat discuwession, we choose Cu as the substance
comprisiang our fibers, amd will wutilize the Drude model in the
calculation of tue various electromagmetic cross sections. A

18

good exposition of this is given im Vooten's book, in wkich the

real and imaginary parts of the dielectric constant take the form

13
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w3 <2
¢! = ] - m (1-32)
w 3
- - -
. e (1 + (v0)2) ° (1-33)

Using mks uaits, the plasma frequency ¥p is given by

o; = ned/me, (1-34)

ia which a2 = electron deasity (--3). e = glectronic change, m =
effoctive mass of the electron, amd e, = permittivity of free

space = (1/36x) z 10~ Y farads/m.

The gquantity © is the eleotron relaxation time, whioch is the
time required for randomization of the momentum vector of sn
electroa in the (moetallic) 1lattice. For our purposes, it is
instruotive to ocast the dielectric comstant im terms of the low

frequency electriocal conductivity g, given by

o = nedzt/m . (1-35)

Now ui = g/ts,, snd Bqs. (1-32) and (1-33) may te written as

' - - 9% 1 -
-1- 0 () (1-26)
"' = g
wsy [1 + (wy)?) . (1-37)

16
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Typical values of the relesxation time t are on the ordsr of 10-14

sec.

I. is easily shown that Eq. (1-36) can be writter in terms

of &' :

g' =1 - e" (wr) . (1-38)

This equation shows that, for all frequencies significantly helow
the visible and infrared (i.e., the microwave regiom), le'l <«
le'l. Also, from EBq. (1-37), we see that e'' goes to its low

frequency value e'' = o/we, for (wr)2 << 1.

The reason for the above analysis is to determine whether or
not the Lrude model can be utilized at low fraquencies. Altho;gh
the low frequency value of &' diffors significantly from a value
of umity, which is normally assumwred for metals, the ratio
le'V8'l will always be very lurge whenm (wt)2 << 1, Therefore,
the use of the Drude model throughout the regiom 10~6 n <Ay <C
10_1 m appears to be justified, and we feel confident in wusing
Eqs. (36) and (37) in the derivation of the electromagnetic crcss

sections throughout this entire waveolength range for appropriate

materials.

17

é
g




1.5 The Reducid Conductivity

Whon one or more dimensions of & conductive material (metal
or semiconductor) are on the order of the mean free path of the
conduction electrons, electrom collisions with the surface will
significantly reduce the mean free time, and hence the mean fzee

path A given by

A= VTt , (i-39)

where vgp = Fermi velocity anmd v = relaxation time discussed
pzeviously. Since the electrical conduoctivity is proportiomal to

© (see Eq. -35), the conductivity will also be reduced.

The classic work on this subject waz dome ix 1938 by

19 In a more tecent paper, Dingle reviews the subject and

q
provides some useful nwmeriocal conputntions.“o The key equation

Fuchs.

in Dingle's paper is his Eq. (2.3) which relates the effective
conductivity ¢ to the bulk conductivity o,, as a function of mean
free path, wire radius a. and the qvantity e that is the

probavi:ity of su olastic collision at the surface:

(- (hy. (1-40)

ool w

o = 0,4 1 -

A value of e = 1/2 is frequently used as the surface scat-—

tering coefiicient. Taking this, we have

(é)] . (1-41)
a

0

—

[

1
Lol |
[- Y17




Ve have had difficulty in obtaining numerical values for wmean
freo paths from the iiterature. However, Kitt0121 provides a
g§ood background as well as gquantitative data for a number of

metals. Taking copper &s the zubject material, a value of =

4.2 x 10-81 is given in Table 10.1 of Kittel's book. Using Eq.

(1-39), and taking the Fermi velocity vgp = 1.6 x 106 u/:oc21 one
obtains a mean free time of v = 2.6 x 10-14 sac, This is in
fairly g0od agreement with the accepted valae <t = 1.9 x 10”14
sec,
Utilizing the above value, oune gets for copper
7.9 x 1077
c =0, (1 - T ] (1-42)

where the radius a has the unit of meters. This equation shows
that, if a = 1.6 x 10-8 m (160 Angstroms), the conductivity is
roughly half its bulk valnue. If the radius is 0.1 microm, the
conductivity is 92% of the bulk value. This exercsise was doune to
show that, indeed, one must consider the particle size effect
upon electrical couductivity, when oomputing absorptive and

extinction properties of thim metallic fibexrs or films.
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1.6 Mumerieal Results for @raphite and Irom

The precediag theory has been reduced to computer codes
including graphical outputs, snd some numeriocal resuits are
presenied here for the two cases of graphite amd iron. It should
be noted that, as part of our AFOSR contract, we have received a
Hewlett Packard BP 9000 Mod. 520 computer. which is employsd for

all computations.

Considering first graphite, the sequence of operations is as
folliows: Taking a bulk conductivity of 105 mho/m and mean free
path of 1.4 x 10~9 m, the reduced comductivity is obtained from
Eq. (1-41) upon specifying the fiber radius. Using tais result
and further assuming an electron relaxation time of 1.4 x 10-15
$060., thq complex optical dielectric oconstant is obtaired as &
furction of frequency from Eqs. (1-36) anmd (1-37). The snrf;co
impedance of the fiber can now be computed from Eq. (1-2), at

whioch point the scattering computations can be carried out.

Some typical E-plane diffecential soattering patterms for
graphite are shown in Figs., 1-2 thru 1-4. The fiber has =radius
of one micron and length of 110 microns. The imcidentr wavelength
is 30 microms, so that kh = 12 and the fiber is severul
wavelengths long. The angle of incidence ranges progressiv: ly
from broadside to neazr end-on aspect in the three figures, and as
one would expect a fairly laxzge main lobe is seen in the forward
direction in all cases, with much smaller side lodbes ip other

directions.
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DIFFERENTIAL SCATTERING
Cross secticon/lamda~2 vs Scattering angle

Theta Inc. (deg.)=%, 8E+0Q1
Radius (m)=}.2E-06

Length (m)=], 1E-@4

-8F  Wavelength (m)=3.QE-0S
Conductivity (mhosm)=], RE+@S
khe=1,2E+01

Ymax=2, ?7E-01

\
" A/C:ENAZ/\\J/ — \L//\\\H/’N\\kJ/{ir—\\\\\\\~J
30 6@ L 129 158 188

%<

Figure 1-2, Differsntial scattering patterm is shown vs.
scattering asngle for a graphite fiber (normal
incidencs).

DIFFERENTIRL SCATTERING
Cross section/lamda~2 vs Scattering angle

Ymax

Theta Inc. (deg.)=6.0QE+01
Racdius (m)=], @E-B6

Langth (m)=], 1E-Q4

<8 Wavelength (m)r3.BE-OS
Coanductivity (mhosm)=],0E+85
kh=! . 2E+01

Ymax=g.4E-01

.2 \\////f\\\\\\\ﬁhq
o 36 32 36 28 158 e

Figure 1-3. Differential scattering patterm is shown vs.
scattering smgle for a graphite fiber (incidence
¢t 60 deg. from the axis).
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The integrated cross sections (scatterimng, absorptioa and
extinction) are shown for the same graphite fiber im Fig. 1-5,
for wavelengths ranging from omne microm up to 10 om. It should
be aoted that we have done a planar-averaging (fiber axis in the
plane formed by the incident and observation diroctions). The
full random orientation results are obtained by reducing the
curves in the figures by aa additiomal 3 db, Note that the
extinotion cross section is precisely equal to the sum of tbhe
soattering and absorption cross sections at all wavelengths, as
discussed earlier. Low frequency Rayleigh behavior, (1/2)4 zfor
the scattering and (1/A)2 for the absorption, is clearly evident
at the longer wavelen,ths. At short wavelengths, the scattering

cross secotion becomes dominant,

The ocorresponding integrated cross sections for a ;:aph;te
fiber slightly larger in diameter and abdbout ten times longer ;re
showa in Fig. 1-6 (see figure for precise dimensions). As one
would oxpeoct, the peak values of all the cross sactions now occur

at wavelengths ten times greater, although the magnitudes of the

peaks are virtually unchanged.

The different methods of computing absorption cross section
are compared in Fig. 1-7 for a small graphite fiber (radius =
0.02 micromns, length = 16 microns). Thoe Galerkin (or varia-
tional) results correspond to the curve with oscillations at the
shorter wavelength end of the spectrum, similar to the results
;oon earlier, The extended quasistatic approximation is seen to

match the variational curve identically at the lower frequencies

22




DIFFERENTIAL SCATTERING
Cross section/lamda~2 vs Scattering angle

Theta Inc. (deg.)=3.BE+@)
Radius (m)=}. @E-@8

Length (m)=1. lE-@¢
Wavelength (m)=3. 2E-@S
Conductivity (mhosm)=1.BE+BS
khet 2E+01

Ymue=1, 4E-21

; Figure 1-4, Differential scattering pattern is shown vs.

scattering angle for s graphite fiber (incidence
at 30 deg. from the axis).

PLOTS OF ELECTROMAGNETIC CROSS SECTIONS VS WAVELENGTH

IKS _Units
* N\ Program: JNP
N\ 1 Apr 1987
9 "’\J ‘\\
N\
= . \\
$ ‘sca \
bt R
5
~
>
[
3
-
]
2
[¥]
g PARAME TERS
e radiuse=). BE-Q6
ngth=1 . lE-Q4
d.=1.BE+OS
kKl=P]
2_ e Lt LALL IS WEEET - L 11l i L1 1111
-6 -5 ~4 logClasda) -3 -2 -1
Figure 1-5. Log-log plot is given of the cross sections vs.

wavelength for & graphite fiber (length 100
microns).
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PLOTS OF ELECTROMAGNETIC CROSS SECTIONS VS WAVELENGTH
M lniss

Program: JNP
1 Rpr 18587

log(Cress Sact/unit vel)

PHRRHE::h
radiuse] . SBcRE
tengthel . 2E-~B3

cond.=|, BE+BS

‘\ tau=}. 4E~135

m.f.p.=1, 4E-@9
tine(sec)=2359

incr= 3.0 deg
1 N3 1011 ] 1 11 1 111 3 | 11 1211 ) 1 Lol .1l it)

Figure 1-6.

-4 logé&Bamda) -2 -1

Log-log plot is given of the oross sectiomns vs.

wavelength for a graphite fiber (length 1000
microns).

PLOTS OF ABSORPTION CROSS SECTIONS VS WAVELENGTH

] tx
| INP_ECS_INF
Graphite
it 1ing
Infinite Cylinder 28 Jum 1387
B ——
? e
"’4 \
: ’
$ \\
" N
S -
S
® Variational
a
n
25 oy
LY
(X} N
- IPRRAME TERS
° radius=2.0E~-@0
- length=l.5E-@S
P cond.=1.BE+PS
tau=]. ¢£=15
m.f.p.=1.4€-B9
time(secl= 148
iner=15.0 deg
k11
3 L 1 L 1 Lti1t L 111 1 L L AillL L1 1 12208 1 L1 1141
-8 -3 ~4 log(lumbda) -3 -2 -1

Figure 1-7.

Log-log plot is given of the absorptionm cross
soction vs. wavelength for a graphite fiber,
comparing the variational resuvlt with the EQS and
infinite cylinder approximations.
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wp to abowt k& = 2x (A = 1.6 x 10-5 m) and continues to follow
quite well ot higher frequeacies. The high frequency infinite
¢yliader approxzimation (showa beginning at k£ = 1) also gives a
good fit to the variational curve, although it is slightly

higher.

The corresponding curves are shown in Fig. 1-8 for the same
fiber whose leangth has been increased by a factor of eight.
Results are ocompletsly anmglogous to those of Fig. 1-7, although
of course the Rayleigh region has nov moved offscale to the
right, and high frequency oscillations of the variatioral ocurve

are muck more rapid.

Turaing movw to the ocase of izon fibers, one has bulk
conduotivity of 107 mhos/m and mean frce path of 3 x 10’11.q.
From Bg. (1-41) one sees that the bdulk comductivity chuiroc-no
correction this time, even for wire radii as small as 20-8 m.
Choosing am electron relaxation time of 4.0 x 107135 gec., the
complex dielectric comnstant is again obtained as a function of

froeguency from EBqs. (1-36) and (1-37).

The differential scattering patterms for irom are shown in
Figs. 1-9 thru 1-11 for broadside, 60 and 30 deg. imncidance,
respectively. Comparing with the earlier Figs. 1-2 thru 1-4 for
graphite, the angular distributions are seen to be quite similar.
The peak cross sectious per square wavelength sre seen to be
smaller for iroa by about 2 1/2 orders of magnitude (compare the

zespective values of !aux in the figures), but on the other Pand,
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PMLOTS OF ABSORFTION CROSS YTCTIONS VS MAVELENGTH
isa

-3

= 1 INP_EQS_INF

- Graphite

: Intinite Cylinder Variational 2% Jun 1987
? | o —-am o g —— - —

E.Q.8.

PRRAMETERS
redius=2.9€-00

1eg(Cress Ssct/unit vel)

&

‘visec)= 61
iner=15.0 deg

k=

L__L_|_|_1_u_;' e gds N EEETY IS NI
-6 ~5 =4 leg(liumbién) -3 -2 -1
Figure 1-8, Log—-1lo0og plot is given of the absorption cross

section vs. wavelength for graphite fibder,
comparing the variational result with the EQS and
infinite cylinder approximations.

IFFERENTIAL SCATTERING
Cross section/lamda~2 vs Scattering angle

Ymax

Theta Inc. (deg.)=3.RE+B)
Radius (m)=].RE~-08
Length (m)=5.RE-06
<8F  Wavalength (m)el, 1E-26
Conductivity (whosm)=1.RE+B7
kh=] 4E+01
Ymaxe=?.3E-04

»
—

] 38 €0 T ¥ 58 T80
Figure 1-9, DPifferential scattering pattera is shown vs.

scattaring angle for anr iron fiber (mormal
incidence).
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Figurs 1-10,

Ymax

Figure 1-11,

DIFFERENTIAL SCATTERING
Cross section/lamde~2 va Scattering angle

Theta Inc. (dag.)=6.0E+D)
Rudius (m)=l AL-00

Length (m)=S . 0(-08
Wavslength (m)=|.1E~-06
Conduetivity (whasmi=l BE+Q7
hhe) 4C+@)

Tmax=d  ?7E~-N3

Differential
scattering angle for an iroa fiber

scattering pattern

60 deg. from the axis).

DIFFERENTIAL SCATTERING
Cross section/lamda~2 vs Scattering angle
’

Theta Inc. tdeg.)=3.8E+31

Radius {m)=1,0E~28

Lingth (m)=S QE-26

Wavelength (m.=1,1E--06 .
Conductivity (mhosm)=1,RBE+8?

hel 4E+D]

Ymax=2.6E-@2

178 TSe

S——
180

is shown vs.
(incidence at

30 60 se 1292 1se

Differential

30 deg. from the axis).
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the aotsal fider volume for iron has been reduced dy adout 5 1/2
orders of magaitude, 20 that on a per unit volume basis iron

soatters much more efficiently, as one would expect.

Orieatationa-averaged cross seotions for iron fiberxrs are
shown ia Figs. 1-12 thru 1-14, for progressively loager fibers
again with radiuws .01 miocromns., Fox the shortest fiber, length =
5 mioroas, shown in Fig. 1-12, the absorption ocross section is
seen to rise vs., fregquency and peak fairly sharply in the
vioimity of k& = =x. The socattering oross sectioa is quite
negligible in ocomparison, except at the shortest wavelengths, and
consequently the absorption and extinotiom curves are practiocally
indistianguishadle. The dashed curves give the guasistatic
spproximations, whioch are seen to be excellent for x£ ¢ x. The
approximate absorption cross section matches the va:lntiogql
computation very well up to adbout k{ = x, and is somewhat higior
at the shorter wvavelengths. Similar ocomments apply for the
approzimate socattering ocross sectiom, althowgh the latter has

been cut off and is not expected to apply beyond k& = =x,

Results are similar when the fibe: lemgth is doubled, as
showa in Fig. 1-13, altkough the peaking of the absorption (and
extiaction) cross section is mot juite so promounced. WYhen the
fiber length is increased by a further order of magnitude (Fig.
1-14), the r£ise to peak values is ssen to occur ax much longer
wavelengtks, as one wvould of ccurse anticipate, and the
absorpticon (and extimotionm) cross section mow shows s broad

platesn sxtending over more than a decade in frequency.
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PLOTE OF ELECTROMAGNETIC CROSS SECTIONS VS WAVELENGTH
MK LUnjta

Program: JNP
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Figure 1-12.

10

leg{Cross Sect/unit vel)

Log-1log plot is given of the oroas sectioas vs.
wavelength for an iron fiber of length S mjiocrons
(dashed curves are quasistatioc approximatioas).

PLOTS OF ELECTROMAGNETIC CROSS SECTIONS VS WAVELENG™ :
MKS Units

Program: JNP
20 Mar 1987

9 PARAME TERS
\ radius=1.2E-08
. length=1. BE~-BS
. leond . =1 . BE+D?

tau=4 . Be-1

m.f.p.=3.BE~11
t ime (zoc )= 342
incr= 5.8 deg

11 1 111) \ LA L1Ll) N R

Figure 1-13.

-5 -4 logllamdn) -3 -2 -1

Log-log plot is given of the cross soctioms vs.
wavelength for an iron fiber of length 10 microns
(dashed cruves are quasistatic approximations).
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It is imteresting that, aside from the more rapid

oscillatioas ocourring for the longer fibers in the short
wavelength region, due to partial dependenmce on trigo-ometric
functions of argument k&, the ocross sections are effectively

independeat of fiber longthiat the shortest wavelengths.

Some sample computations of asbsorption ocross section for
iron are shown in Figs. 1-15 and 1-16. The fiber radii are 2 and
8 microns, respectively, and the length is 64 microns im both
cases. The absorption computed by the variationmal method is
similar to r+sults above, showing a peak at a wavelength of about
100 microns. In Fig. 1-15, the extended quasistatic curve tracks
the variational resalts fairly well excoept at the shorter
vavelengths, where it dces not dscrease as it should (the reason
for this discrepancy is mot presently umderstood). The infinjite
cylinder approxzimation, on the other hand, does reasonably well
at the shorter wavelongths. For the larger fiber radius of Fig.
1-16, both of the approxzimate computations are seen to be in

reasonably good agreement with the variational result.

It is straightforwvard to compute the cloud mass per square
moter required to produce a 20 db target signature reduction,
using oither graphite or iron particles. The signal decays
exponentially within the cloud, and a 10 db reduction on each leg

of the round-trip path requires that

-ng L
°xt ¢ _ 0.1, or

(1-43)

nB,xth = 2.3,
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PLOTS OF ELECTROMAGNETIC CROSS SECTIONS VS WAVELENGTH
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Figure 1-14. Log-1log plot is given of the cross sections vs.
wevelength for am iron fiber of length 100 microns
(dashed curves arc quasistatic approximations).
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where n is the number of fibers per uwmit volume and L. is path
length through the cloud. We include an additional fact. r of 1/2
in the extinttion cross sections Boxt given earlier, so that all
polarization and (random) orientatiom effeccts wre now completely
accounted for. Strictly speakimg, Eq. (1-43) assures that
absorption dominates over scattering for the single particle. If
this is not the case then multiple scattering oeffects must be
nore carefully accounted for, using the radiative transfer

anralysis to be discussed shortly.

For a section of the cloud, bhaving cross—sectional area A,

and length L,, the total mass of fibecrs M is given by
M= A L. avp Pp» (1-44)

where Vp is the volume of a single fiber and Pp its denasity. For
the case at hand, setting A, = 1 a2 aad substituting in from Eq.

(1-43) gives

Using this result, from the extimctiom cross section per unit
volume data of Fig. 1-5, and taking s density 4 gn/cm3 for
graphite, one obtains the masa requirod at various wavelengthLs as
listed in Table 31-1. Note that the values in pareantheses may be
underestimates because the fibers are not primarily absorbers at

those wavelengths (see Fig. 1-5).
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Significantly less aass is required employimg ircm fibers,

as can be

seen ftog the last ocoluwr of the table. Here we

employed the dats of Fig. 1-14, assuming pp = 1 gn/cm3 for iron.

Note that the increase in dengity is more tkam compensated by the

higher conductivity, which in turm allows one to employ a greatly

reduced fiber radius.

Table 1-1, The mass of graphite or iron fibers required per
squaxe metoer of c¢loud cross sectiom for a 20 db
reduction in signal stremgth (values in
parenthosis may be underestimates; see text).

Wavelepgth A (m) Mass of graphite (gm) Moss of iron (gm)

10”6 (180) {1.8)
10”3 (35) 0.079
1074 (6.3) 0.027
1073 72 0.025
1072 1500 0.16
1071 - 10
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1.7 Radiative Tranafer in Fiber Clonds

In order to compute the transmission and reflection by a
cloud of fibers, inocluding multiple scattering effects, we omploy
resdiative transfer technigquss, vsing a ocomputer program developed

ouxlior.zz'zs

Evsontially, the computation employs the van de
Hulst doubling method inm s sladb goometzry, vwith Taylor series
represontation for thes thin—layer starting values of the

transmiscion and reflection matrices.

Tor & ¢loud of identical fibers randomly oriented, as
considered here, the required inputs from the single—-scattering
resulits are the albedo (ratio of scattering to extinction oross
section) and the differemiial scattering pattern of the single
fiber. The calculation has been carried out for both graphite
and iron, assuming monochromatic radiation normally incident o; a
slab region containing the fiders. In each case both wavelength
and fiber dimensions are ckosen so that the scattering and
abdsorption cross sections are roughly ccmparable, Results will
be givern for selected values of the optical depth of the slabd
(opticval depth is obtained by multiplying the thiockmess by the
zambes of fibers per umnit volume and the extinction cross section

of one).

Consider first graphite. For an iucident wavelongth of 30
micront and particle dirensiuns as listed im Fig., 1-17, ¢tk»
fracticons of ‘incident energy reflected from the front

(illuminated) fasce aud transmitted through the back (shadowed)
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face are showa in the figure as & function of u = cos 0, wherxre ©
is the scattering angle measured from the original incident
direction. Optiocal depth is 0.5 im this instance. Note first
the dolta—fumoctioa bdehavior (trumocated at umity for clarity) of
the transmitted power im the forward direction j = 1, This
represents the coherently transmitted term which has beexn neither
scattered or absoxbed. Aside from some minor fluctuationms, the
bslance of the transmitted flux is seen to be essontially
1sotropi;, as is the reflected flux, although both temd to be

slightly higher in the graziang directions (p = 0).

Figures 1-18 thru 1-20 give the ocorresponding results with
suwocosive doublings of the slat thickness, bholding all other
paraneters fixed. The transmitted flux is seen to gradually
decrease, as one vwvould expect, and ia additiom, become
concentrated more in the forward direotioa. Note that the dolf;—
function contributiom is difficult to ascertain graphicelly.
This is no prodblem, hovever, becanse we kanow apriori that the
fraction of coherently transmitted flux is given simply by e~ %
(v = optical depth). The reflected flux distribution is scen to
become comstant at the largest optical depths; this is of course,

jus: the distribution one would obtain from an infinitely thick

E slab, 4

l These curves have been integrated to obtain the total
fractions of ipcident flux reflected and transmitted, and the
rosults are listed in Table 1-2. In each case, of course, the

balance of the incident flux is absorbed within the fibers. The
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Cylindrical Scattersrs
Reflecttion Transmigsion
PARAMETERS (MS) 1!

Have length= 3.08E~-83
kae 2.1E-81

g hhe |.26+81
o Conductivity= |.0E+88
fAivede~ 6.3E-01
Optica) Dapthe= 5.8£-81

<

e.e1

Figure 1-17 . The reflected and transmitted imtensities are
plotted vs. cos © (0 is the soattering anmgle) for
a cloud of graphite fibers of optical depth 0.5,

g g

"Cylindrical Scatterers

Reflesction Transmission
PARAMETERS (MKS) 7!

Wavelength= 3.8E-05 |
ha= 2,1E-01
khe 1.2€+081

Conductivity= |.RQE+2S
Albedo~ 6.5E-01
Optica! Depth~ |.BE+BR

k Figure 1-18. The reflected and transmitted intemsities are
plotted vs. cos 6 (0 is the scatteriang angle) for
a cloud of graphite fibers of optical depth 1.
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Figure 1-19.

Figure 1-20.

. Cylindrical Scatterers

Reflgction Transmission
PARPMETERS (MkS) ! 1

Have length= 3, 2€-0%
ka= 2,1E-81
kh= 1.2€+01

Conductivity= |. 8€+0S
Albedo=~ K.5E-01
Optical Depth= 2. 8E+08
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i
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The reflected and transmitted intensitiec are
plotted vs. cos O (6. is the scattering angle) for
a cloud of graphite fibers of optical depth 2.

Cylindrical Scattesrers

Reflaction
PARMMETERS (MKs) T}

Havelength= 3,8€-83
ka= 2.1E-0}
khe 1.2E+81

Conductivity= |.@E+2S ]
Albedo= §.SE-91
Optical Depth= 4.8C+80

Transmission

The reflected and tranmsmitted intensities are
plotted vs. cos O (0 is the scattering angle) fcr
8 cloud of graphite fibers of optical depth 4,
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Table 1-2, The fraotions of (integrated) reflected and
traasmitted flux are givea vs. optiocul depth for a
cloud of graphite fibers (albedo = L.65).

Optical Depth Reflected flvz Isansmitted flux
0.5 0.088 0.729
1.0 0.120 0.521
2.0 0.145 0.257
4.0 0.151 0.058
8.0 0.152 0.003

total reflacted porticn is seen to saturate at adbomt 15% for the
thiocker slabs. It is also interesting to mote that for the
thickest slabd the coherent term msakes only a negigible

contribution to the total transmitted flox.

The corresponding results for a cloud of irom fidbers are
shown in Figs. 1-21 throuzgh 1-24, this time using aa incident
wavelength of 1.1 microns and appropriately reduced fiber
dimensions, as listed in the figures. MNost of the comments made
above in connection with graphite are seen to apply here, aleo,
but there are two significant changes. First, the reflsoted flux
pattern is seen to be somewhat weaker and has already become
effectively independent of slad thickness at an optical depth of
0.5. Second, the transmitted flux falls off much faster with
increasing thickness. Both of these changes are attributgble to
the smaller albedo encountered, whick is of.oon:so. just another
way of saying that absorption has become dowinant over scattering

in this case.
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Cylindrisa) Saattarers

Reflection Transmicstion
SARMMETERS (MKE) 1

Na/elengthe 1.18-06
kha= §.7C~-02
khe 1.4C+81

Condvativity= 1.0€+8?
Ribede~ 3.3E-81
Optias) Depth= 3.8C-01
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Figure 1-21., The refleocted and transmitted intensities are
plotted .vs. vos O (0 is the scattering angle) for
& clcud of iron fibers of optical depth 0.5.

Cylindrical Scuattsrars

Reflection Tranamission
PRRAMETERS MKS) 7!

Wavelength= | 1E-86
ka= 5.7E-082
kh= 1.4E+8@)

Conductivity= 1,BE+B?
Rlbedo= 3,5E~-01
Optten! Dupth= 1.2E+20

‘ Figure 1-22. The reflected and transmitted intemsities are
plotted vs. cos 6 (6 is the scattering angle) for
a cloud of ironm fibexs of optical depth 1.
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Figere 1-23.

Figure 1-24.

Cylindrisa) Sesstturers

PARRMETERS (MKS)

Reflecttion . Transmission ‘l

!

Have lengthe . 1E-08 i
kae §.76-02

hhe |, 4E+01 !

Candustivity= | .BE+8? |

Alhede= 3.5C-81 !
Optinn) Depth= 2.0C+08

0.01

The reflected and transmitted intensities are
plotted vs. cos 0 (0 is the socattering angle) for
a olouvd of iron fibers of optical depth 2,

Cylindrical Scattersrs

Reflection Transmission
PARRMETERS (MKS) 7!

Navelengih= 1.1E-86
kas S,.7E-82
khe {.4E+0]

Conductivity= 1.8E+@?
Ribedo= 3.5E-81 |
Opticul Depth= 4.DE+8Q

9.01

The reflected and transmitted intensities are
plotted vs., cos O (0 is the scattering angle) for
s cloud of iron fibexs of optical depth 4.
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The corresponding integrated fluxes for izom are listed vs.
optical depth ia Table 1-3, One sees from the table that the
totel reflected flux isdeed chamges very little with imcreasing
slad thiokmess, and at the same time the tramsmitted flux is

somewhat smaller and falling off more rapidly than ia the earlier

case.
Tadle 1-3, The fractioms of (imtegrated) refleoted and
transmitted flux azre givea vs, optical depth for a
cloud of iron fidbers (albdbedo = 0.352).
Opticsl Depth Reflected flux Izgnspitted flux
0.5 0.042 0.659
1.0 0.055 0.427
2.0 0.062 0.176
4.0 0.063 0.028
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SECTION 1II. THERMAL RADIATION BY SMALL PARTICLES

2.1 Introduction

In the calculation of electromagnetic scattering and absorption by small
particles having at least one dimension on the order of the wavelength of the
incident radiation, it is not uncommocn that the absorption (as well as the
scattering) cross section can be significantly greater than the projected area
of such particles. This is easily understood from the electromagnetics point
of view and causes no serious concern. However, if we consider the thermal
radiation from such a particle, ,me interesting questions arise with respect
to its thermal emissivity, its thermal radiation spectrum, and the connection
between such radiation and classical radiation theery. The purpose of fhis
paper is to address these questions and to propose a quantitative model for
the calculation of the electromagnetic radiation spectra of small absorbing
particles. Of particular interest will be particles of the type discussed in
Section I, namely thin conductive cylindrical particles having large

absorption efficiency factors.
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2.2 Classical Radiation Theory

In this section we summarize those aspects of the classical theory of

radiation that are pertinent to the discussion to follow.

Thermal Equilibrium. Take the classical case of a perfectly insulated
spherical cavity whose temperature is T and whose wall absorbs 100% of all
radiation incident upon it. If all elements of the wall are to be in thermal
aquilibrium, th:n each element must radiate 100% of the radiation incidentc
upon that element. Since this must be true at all temperatures, it follows
that the absorptivity a and the emissivity ¢ of the wall must each be equal to
unity. The resulting radiation is well known as blackbody radiation, whose

gpectral distribution is given by the Planck Radiation Function.

To sunmarize,

%p = pp ~ 1» -1

where bb is taken to represent blackbody properties.

The Planck Radiation Function is given by:
2xch

QhC/AKT

- Wyp (A T) = (2-2)

2¢

where cm=speed of light, h=Planck’s constant, k=Boltzmann‘s constant,

A=wavelength, and T=absolute temperature. With the insertion of an
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appropriate constant (10 “"), the units of Wbs are the usual

watts/cmz-micron, assuming that Eq. (2-2) is originally evaluated in MKS

units.

The intensity of the radiation emitted by a blackbody is t¢he integral over all

wavelengths of the Planck Radiation Function:

Ibb(T) - Iwbb(A,T)dA. (2-3)
o

The total power radiated by the blackbody is otviously the product of the

radiant intensity and the area Ay of the blackbody:

Pbb(rad) - Abblbb watts. (2-4)

Kirchoff’s Law. Next, place within the cavity a body having arca A and
wavelength dependent absorptivity a(A) and emissivity e(A). Since the radiant

flux is uniform within the cavity, the power absorbed by the body is given by

Pabs - AJa(A)Wbb(A,T)dA. (2-5)
o

which sre that these quantities are th2 ratios of absorptance and emittance,

reaspectively, to those of a blackbody.
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Note that, in Eq. (2-5), we have used the same temperature T as for the
(blackbody) walls of the cavity. This is essentially the definition of
thermal equilibrium, namely that two bodies in thermal equilibrium must be at

the same temperature.

The power radiated by the body is

Prad - AJC(A)Wﬁb(A,T)dA. (2-6)

o

The important consequénce of the above discussion is that, if the body is in
thermel equilibrium with its surroundings, its absorptivity and emissivity
must be equal at all wavelengths. This is true because, in thermal
equilibrium, Eq.’s (2-5) and (2-6) must be equal for any vslue of tempefature

T.

Therefore,

a(d) = (). (7)

Equation (2-7) is what we might term the "detailed" statement of Kirchoff's
law of thermal radiation. One¢ usually sees this in the form of the average
values of a and e¢. Since (2-7) is crucial to the subsequent treatment, it was

developed in what we believe to be a simpie but fundamental manner.
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2.3 Microscopic Particles

Absorbed power. The power absorbed by a particle at any specified wavelength
A is, by the definition of the absorption cross section, the product of the
incident radiant intenszity and the ebsorption cross section. If wavelength of
the incident radiation is xo, then

P - Io(Ao)a

(Ao) . (2-8)

abs abs

In the more general casz, if the incident radiation occurs cver a spectrum of

wavelengths, we iust use the integral form of (2-8):

Pobs — Iaabs(x)winc(k)dk, (2-9)
o

where Winc(x) is the intensity spectrum of the incident radiatiocn.

The absorption efficiency factor is defined as the ratio of the absorption

cross section of a body to its projected area Ap:

Qupg (D) = g (V)/A. (2-10)
Rewriting Eq. (2-9),
[- -}
Pabs - Aijabs(A)Winc(A)dA, | (2-11)
o
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Note that Q () for the particle in Eq. (2-11) replaces a()) for the

abs

macroscopic body in Eq. (2-5). We write explicitly,
a{d) = Qu (V). (2-12)

Siace, in Eq. (2-7), we have shown that a(A) = ¢(A) for any body, it

directly follows that

€(A) = QM) (2-13)

abs

Radiated Power. The power radiated by the particle is therefore given by

Poga ™ APJQabs(A)WBb(A,T)dA, (2-14)
o

where A~ total area of the particle.

In the steady state, the power radiated by the particle is equal) to the power
absorbed. Therefere, Eq.'s (2-11) and (2-14) must be equal. Equating thease
provides the expression for total radiated power by the particle, as a

function of the incident radiation spectrum:

-]

Poga ™ AplQabs(A)Winc(A)dA - Ap Qabs(A) ,,T)dA. (2-15)
o

J
(o]
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Using the expression (2-2) for wbb' we obtain an expression involving only
the temperature of the particle , its geometry (A and Ap), and the

integrated spectrum of the incident radiation:

2
2nc“h i )
AJQabs<A)A5(e(hc/AkTeff) _l)uA Aplaabs(x>winc(x)dx. (2-16)
° o

where we hawve used Teff in place of T, as discussed in the following

section.

Equation (2-15) has the units of intensity. In the case of monochromatic

incident radiation at waveiength Ao' we can write:

2
“IQabs“)" e o AQ OBy (21D)
o

3O (ahe/ AT oee) 1y

Equations (2-16) and {2-17) can be used to compute the radiating ftemperature
of the body, as a function of its wavelength dependent absorpiion efficiency
factor and the spectral content of the radiation incident upon it. Also, the

integrand of these equations is the thermal radiation spectrum of the body.
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2.4 Interpretation

Enissivity. Equations (2-16) and (2-17) are valid, regardless of the

nunerical values Qabs‘ In particular, as we have shown, when Q is

abs
larger than unity, the emissivity is correspondingly large. If one considers

this from the thermodynamics point of view, some questions arise, such as "How
can a radiating body have an emissivity greater than that of a blackbody?" The

following 1is a brief discussion of why this is not an unreasonable

circumstance.

In the steady state, the particles comprising the body are elevated to higher
energy states by virtue of absorption of power from the incident wave. The
body loses energy at this same rate by virtue of the (presumably) random
emission of photons as the excited particles drop into lower energy states.
In the case of a 'macroscopic’ body, all of whose dimensions are very large
compared with all wavelengths of importance, it is easy to Qnderstand how the
emissivity must be dependent only upon the composition of the body. However,
in the case of the ’‘microscopic’ body, its geometry also plays an important

role in the wavelength dependent probability of emission of photons. Why

should this be so?

The answer is that the same geometrical properties that cause the body to
absorb electromagnetic energy at a rate proportional to its absorption cross
section, similarly influence thermal radiation by the quantum mechanical

system of particles. A detailed analysis of this problem would involve the
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full quantum mechanical treatment of the syctem of particles, in which the

p geometry of the body would necessarily be included.

If we think about the absorption from the point of view of Maxwell'’'s
’P equations, but congsider the radiation from the quantum mechanical point of
view, the picture can be quite confusing. The particles under consideration

here behave in some respects like macroscopic bodies and in other respects

P like quantum mechanical systems having absorption and asmission spectra
determined by the modal constraints (which depend upon the composition as well

as the geometry) of the specific particle.

P From the quantum viewpoint, if the dimensions of the body were all on the
order of an optical (radiating) wavelength, only certain wavelengths of
absorption and emission would be permitted. As, e.g., one dimension is
P Increased, the modal structure will become more complex. At a sufficiently
large dimension, the transition probabilities overlap and the body exhibits a

continuum in its emission and absorption spectrum.

The case of coherent incident radiation and incoherent thermally emitted
radiation would not pose a problem if the analysis were carried out at a

L sufficiently fundamental level.

Temperature. The temperature appearing in Eq.’'s (2-16) and (2-17) can also
P lead to some questions regarding its precise meaning. We believe that there
is no question about its meaning when we consider the thermal radiation from

the body. But, is this the "thermodynamic" temperature that one could in

51




L
B

principle measure with a thermometer? This question is analogous to that
cited above with respect to the emissivity. The body under consideration has
some properties that are most easily considered from the macroscopic
thermodynamic point of view and other properties that must be thought of from
the quantum point of view. The concept of "temperature" arises from the
assumption that one is dealing with a body of sufficiently large dimensions
that the use of macroscopic thermodynamic quantities is appropriate. To avoid
possible contradiction, we will use the term "effective radiating temperature"

Teff in the discussions to follow, and as in Eq.'s (2-16),(2-17).
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2.5 Computational Procedure

In this section, we present computational results obtained through the use of
the foregoing theoretical treatment. Note that, in the use of Eq.'s (2-16)
and (2-17,, one would normally be provided with that information needed to
reduce the RHS of (2-16) or (2-17) to a number. The mathematical problem is

to find that value of T .. in the integral that satisfies the equation.

The procedure in the simpler case of monochromatic incident radiation is as

follows:

(1) Compute Q (Ao) over a wavelength range sufficiently broad to

abs

include A as well as that of the thermal radiacion by the

o)

particle.
(2) Evaluate the RHS of Eq. (2-17).

(3) Perform successive numerical integrations of the LHS of (2-17) to
obtain a table and graph of Teff vs Iinc(xo). The wavelength of

the ircident radiation must be explicitly provided.

(4) Choose a value of Teff from step /2-3) by numerical interpolation or
from the grzph, that corresponds to the incident Intensity Io. This

value of Teff' and the wavelength of the incident radiation,

are input to the computer.

(5) The computer program computes and plots the radiated intensity or
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pover spactra, the intensity of the incident radiation (vatts/cmz).

and the analogous blackbody (Q_,_=1) intensity or power spectra.

nbs

FE In the case of illumination over a wavelength spectrum within which Q ()

abs
undergoes substantial variation, Eq. (2-16) would be used to compute Togg V8
fQ.bs(A)W(X)dA over the incident wavelength spectrum. The latter quantity
P' is the average intensity of the incident radiation, and would be substituted
for Io in step (3) above.

The accuracy of the numerical integration routines of (3) above is easily

P checked by letting Q.ps~l (blackbody) and comparing the numerically
evaluated integral with the analytic result of the Stephan-Boltzmann Law:
P (A, T) a1,

3

p
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2.6 Results

In order to carry out the computations outlined above, we must choose a
theoretical model for calculating the wavelength dependent absorption

efficlency factor Q (A). For simplicity, we will choose for chis

abs
discussion the Extended Quasistatic (E.Q.S.) model*. which is described in
Section I. This model, although not as exact as the Variational technique
(discussed ¢lso in Section I), has the advantages of being analytic and of
utilizing short computer run times. 1In the case of engineering applications,
the E.Q.S. model would be first used to optimize the various paramaeters.

Having accomplished this, one would then use the Variational technique for the

final computations.

We first note that (E parallel to particle axis) in the parameter regime where
the absorption cross section is maximized (Le¢"<1l or L’e"<1l, as the case may

be), the expression for the absorption efficiency factor reduces to

Q. > %aac/yo/co, (Le" —> 0). (2-18)

Note that: (i) in this regime, the absorption efficiency factor is
proporticnal to the particle radius, a, and is independent of wavelength.
This fact can be utilized in the tailoring of the spectral emissivity of a
particle cloud e.g. graphite or iron. (2) The ratio aabs/Qabs is the

projected area of the absorbing particle, with respect to the direction of
the incident radiation. The results in Fig.(l) were obtained by assuming that

the incident E-vector is parallel to the particle axis. The implications of
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this will Le discussed in a subsequent subsaction. (3) For the assumed
cylindrical particles, the absorbed power is proportional to Ap-2a1. while

the radiated power is proportional to A=2xal.

2.6.1 Graphite.

]

Our first examples of small particulate radiation involve particles éomposed
of graphite. The first example will use particles having very small radii of
100 Angstroms. Such particlas can be produced by, for example, chemical vapor
depooitionz. The conductivity of these is estimated to be 105 mho/m. The

estimates of mean free time and mean free path of 1.35X10~15 sec. and

-15

4X10 m, respectively, were provided to N. Pedersen by I. Spain, Colorado

State University,

Figure 1 iz a log-log plot of the absorption efficiency factor vs wavelength
for the graphite particles discussed above. The particle length was nhcse# to
be 10 microns. Note that the coordinates each span five orders of magnitude.
The wavelength range is from 0.1y to lcm. Note that the absorption is a
constant over the range from about 5u to about 5 millimeters. Note also that,

for this particular particle, Q. <1 at all wavelengths shown.

abs

Table 2-1 and Fig.2-2 were computed and plotted*. as previously outlined, by
means of inserting a temperarure Teff in Eq. (2-17) and solving for the
incident intensity I,. Note that the wavelength of the incident hbeam was
chosen to be A°-10.6 microns. This computation, involving numerical
integration of the LHS of Eq. (17), was carried out for each value of '1‘e

ff
shown in Table 1. Also shown in the Table and in Fig.2-2 are the
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corresponding values of I_ for an equivalent blackbody (Q -1 at all
& [+

abs

wavelengths). Since, as stated, Q <1, we would expect that Teff for

abs
this particle would be greater for a given value of I, than Teff for the
equivalent blackbody: The efficiency for absorption is greater at 10.6 microns
than it is at the shorter wavelengths. Therefore, the particle must be hotter

(relative to a blackbody) in order to radiate the same power that it absorbs.

From the above, it is clear that it is only the sghape of the Qabs(x) vs A
curve, and not its magnitude, that determines the curve of Teff vs
Io(xo). Table 1 and Fig.2-2 are not strictly required for these
computations, but are provided to lend insight into the physics of the

interactions.

In Fig.2-3 are shown log-log plots of spectral emittance (in the usual units
of watts/cmz-micron) vs wavelength in imicrons. The solid line represents
radiation from the graphite particle, and the dashed line is the usual Planck
blackbody spectral radiation curve. The input parameters are Teff' 2500
deg.K, and the wavelength of the incident radiation, A°-10.6p. The incident

intensity, IO(AO)-ZGOO watts/cmz, is automatically computed.

The blackbody radiates at least an order of magnitude more efficiently than
the particle. This is because Qabs is on the order of 0.1 or less in the
radiation wavelength regime shown. The blackbody spectrum is skewed somewhat
towards the shorter wavelengths. This is because the absorption efficiency

decreases with decreasing wavelength for wavelengths smaller than ~5u.
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Figure 2-1. Absorption efficiency factor vs wavelength for a 100

LOG(ABSORPTION EFFICIENCY FRACTOR) vs LOG(WAVELENGTH, microns)

PARAMETHERS (mks):
— Radius={E-8 m

Lengths{E-5 m \\\N
Cond.=1§5 mho’m

-1 » Tau=1 A8F-~1% sat
m.f.p.=q4E-1S m
6 Jul {987

-2

-3

-4

-8 1 1 1 Linl Lt 1111t Lt 11l 1 1.1:11 1Ll 1l

-1 ] 1 ] 3 9

Angstrom radius graphite fiber.

4 PLOTS OF LOG(Teff(deq.K)) vs LOG(Jo(wattss/cm~2))

= Havglength of] tncident fadistiond 1B.8 micnons

C T Ahalogous bllackbody YHemparaturg

-
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Figure 2-2. Plots of Togg V8 I, from Table 2-1.
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Lamdat
RadiugstE-8m
Length=1E-Sm
Butk conds=1ESwho
m.f.p."4E~1Tm
Tausl,3SE-15sec

inc)>=10.6 microns

6 Jul 1987
Io loCblackbody) Teff
(warts/cm~2) (watts/cm 2> (deg.¥)d
“,43E-Q) ~~---- 1.44€-01 -----w---- 300
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?7.626-0) ~----- 8.00E-Ql ~-~------- 460
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1.21E+80 ~~~--~ 1.30E400 ~--------~ 520
1.53E+00 ---—-~ 1.67E400 ~ccrcmc--=- 5%3
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3.03F400 -——~-- 3.47E400 ~~cccecww~- 654
3.80E+00 ------ 4.43E400 —~---=---- 706
4,73E400 ~----- S.66E400 —-~----—--—- 751
5.93E+00 --~--- 7.23E400Q v=~c--mm--- 798
7.39E+80 ------ 9.23E400 —~---=----- 848
9.19E+008 -~-~=- 1,.18E+0Q] -~----—--— -1
1.14E+01 -~----- 1.50E+6] —~=-=----- 959
1,41E¢Q1 ~~-=-== 1.92E40) -~----~--= 1019
1.73E408) ~-==-- 2.435E4+0) -~=---w--- 1083
2.16E+01 ---—-- 3.13E+0) -~~---=-w--= 1151
2.66E+Q) ~--~---- 4,00E+0] -~--—-----~ 1221
3.27E+B1 ------ S.11E*Q) ~~~m—cc--- 130
4.01E+R} ------ 6.93E+48] —~--cmmm~- 1383
4.91E+@] -~~~--~ 8,34E+01 -~-------- 14790
€.00E+01 ------ 1.06E402 -~-====-~= 1363
7.32E+01 ------ 1.36E402 —~----m-nm 1662
3, 90E+OL -~---- 1.74E402 ~~-=-o-==-= 1767
1.08E+02 ------ 2.22E482 ~~~--—--== 1878
1.31E+02 ------ 2.83E+402 ~~-------- 1996
1.98E+02 ~----- 3.62E402 ~~---—---- 2122
§.9Q0E+@2 ~-—---- 4,62E+32 ~~---w-==-~ 22%6
2.29E+02 ~~~--- S.90E+02 —-~-—-—m== 2398
2.73E+02 ~~-=--- 7.53E+02 —-w-wm----- 2949
3.29E+02 ~-—--- 9.62E402 ~~---c---== 2710
3.93E402 =--=--~ 1.23E403 -v~--—~--= 2881
4.69E402 ~-~~--- 1.570403 ~=-w--mm-== 3063
$.59E+02 ~----- 2.00E+03 -----~---- 3256
6.64E+02 -----~- 2.%6E+03 ---------- 3461
7.87E402 ------ 3.2TE493 ~-emmimmmm 3679
9.31E+082 ------ Q. 17E+03 —--------- 3311
1.10E+03 ~--—-- 5.33E403 ~-----nn- [3%-1:]
1.30€+03 ~----- 6 BOE1IF —~--~-m—--- 4420
1.53E+03 ----~- B8.6%E+03 ~~-ve--w--= 43598
1.79€+03 --=-~= 1.11E404 -~---—---= 499%
2.11E+03 ---~-~ 1.,42E404 ~----cnn~ 5399
2.47E+C3 -----~ 1 .BlEvE ~-—----=--~ S644
2.88E+03 ~-=--- 2.31E+04 ---------- 6003

O
Table 2-1. Radiating temperature vs incident intensity. Thin graphite fiber. ‘
C
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LOG(EMITTRANCE, watts/cm~2-micron) vs LOG(WAVELENGTH, microns)

Effective Radiating Temp.= 2500 deg.K
Lamdalincident)=18.6 microns
Incident intensity=2.6E+D2 watts/cm~2

2 o me—— Blackbody Spectrum

PRARRMETERS (mks):
Radius=1E-8 m
Length=1E-5 m
Cond.=1E5 mha/m
Tau=1,35E-15 sec

\ m.f.p.=4g~1S m

-2 RIS RR I ; ©13ulN987; 4 41

-1 9 1 2 3 b |
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Figure 2-3. Radiant emittance of the 100 Angstrom radius graphite fiber.
Effective radiating temperature = 2500 deg. K.

LOGC(EMITTANCE, watts/cm~2-micron) vz LOG(HWAVELENGTH, micrans)

/7E$!pctive Radiating Temp.~ 1500 deg.K
Lamdg(!ncidant)=18.6 microns
Ingidunt 1atensity=5.2E+@1 wattz/cm~2
\
") —====—Blackbody Spsctrum
-1
-2 g
PARAMETERS fmks):
-3 Radius=lE-8 m
Length=1E~5 m
Cond.=1E5 mhosm
Tau=1,35E-15 sec
. f.p.=4E-15 m J
- Lt A1y 1 t1piv p B 3ulii98?, 4 5y i
-1 e 1 2 3 9

Figure 2-4. Radiant emittance of the 10C Angstrom radius graphite fiber.
Effective radiating temperature = 1500 deg. K.
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We next lower the temperature Teeg to 1500 deg.K (Fig.4). The required
incident intensity at A°—10.6p is correspondingly reduced from 2600 to 52
watts/cmz. The radiation spectra of tha particle and the equivalent
blackbody are significantly reduced in magnitude and are shifted towaids the
longer wavelengths. The curves are more nearly equal in magnitude because

Q

abs()\) is more nearly equal to unity for these radiating wavelengths than

in che case of Teff-ISOO deg.

Figures 2-5, 2-6, and 2-7 are similar to Figures 2-3 and 2-4, except that the
values of '1‘eff (and the corresponding IO(AO)) are lowered to 1000, 500
and 300 deg.K, respectively. The ratio of particle emittance to that for the
blackbody is ecsentizlly the same for Tege™ 500 deg.K and 300 deg.K. This is

because Qabs is essentially constant over the radiation spectra for both

values of Teff'




LOG(EMITTANCE, wetts/cm~2-micron) vs LOG(WAVELENGTH, aicrons)

Effective Radiating Temp.= 1080 Jug K ]
Lemdalincident)=10.6 microns
Incident intensity=1.3E+81 watissem~2

e TN mmee- Rluckbedy 3pectrum

PRRAMETERS (mks):
Radius=1E-8 m
Lengih=1E- S m
Cand.=1ES mho/m
Tau=] ,3ISE~15 sec
m.f.p.~4E~15 m

Figure 2-5. Radiant emittance of che 100 Angstrom radius graphite fiber.
Effective radiating temperature = 1000 deg. K.

LOG(EMITTRANCE, watts/ca~2-micron) vs LOGIWAVELENGTH, microns)

Effective Radtating Temp.= 520 deg.K
Lamde(incident)=18.6 microns
Incigent>{ntensity=1.8E+08 watts/cm 2
’ ~
-2 Dlackbody Spectrum
-3
-4
PARAMETCRS (mks):
- Radius=iE-8 m
Length«1E-5 m
Cond.=1E5 nho/m
Tana=} ASE-1S sec
X m.f.p.=4ZT~15S m
- W B IubiN9%?, 5
-1 2 3 4

Figure 2-6. Radiant emittance of the 100 Angstrom ruiius grapnite fiber.

Effective radiating temperature = 500 deg. k.




LOG(EMITTANCE, watts/cm~2-micrun) vs LCS(WAVELENGTH, micron:)

-2 R -
Effsctive Radiat.ng Temp.= 380 deg.K
Lamdal(incident)«18.6 microns
Incident - Tntensity~1.5E~81 vatts.’'ciane
-3 Bleckbady Spectrum
il
E;P . '.‘5
ﬁ r PRRAMETERS (mks):
t -6 L Radius=1E-8 m
l = Length=lE-3 m
Cond.=1E5 mhosm
‘ \ Tau=1.35E-15 zec
L . f.p.v4E-15 m
- 1oy d 98?7 ol
3 -1 3 4

Figure 2-7. Radiant emittance of the 1(C0 Angstrom radius graphite fiberx.
Effactive radlating *temperature = 300 deg. K.
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It is next instructive to see what happens to the thermal radiation spectrum
when Qab.(x) exhibits more structure cthan that shown in Fig.2-1. For this
purposa, we choose a graphite particle of the more conventional variety,
having a langth of 1 millimeter and a radius of 1 micron. At the short
wavelengths, the correspondingly large values of (ka) give rise to the

" resonance shown in Fig.2-8. Note also that the enhancement of Q as

abs’
predicted by Eq.(18) is seen at A=~3 millimeters.

Figure 2-9 (Io vs Teff) is analogous to Fig.2-2, but shows,as erpected, a

! much larger deviation from the blackbody curve of Fig.2-2.

The plots of radiation spectra for this particle, with Terg (and therefore
I,) as the incremented parameter are shown in Fig.s 2-10 through 2-13. In

the case of this particle, it is easy to see how the form of Q (1) is

abs
reflected in the radiation spectrum. It is particularly 1nterestiﬁg to
observe that, at the highest temperature, i.e. Teff-ZSOO (Fig.2-10), the
particle radiates as though it were much cooler, as compared with the
equivalent blackbody. At the lower temperatures, e.g. Teff-506 (Fig.9), the

radiation spectrum (neglecting the cusp) has essentially the same shape as a

blackbody at the same radiating temperature.
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LOGCARSORPTION EFFICIENCY FRCTOR) vs LOG(WAVELENGTH, microna)

PARAMETERS (ms):

Rad{ <6

L thelE-3 m !
ond.=1ES mho/m '
Taus=1 3%F-1% aac

) .f.p.=dE=
\\ yd ms;Jﬁl ‘53;5 "

/

-3 11 111 11t 11111 1) il 11 11113 L1 L LLELL
-1 e 1 2 3 4
D Figure2-8. Absorption efficiency factor vs wavelength for a 1 micron

radius graphite fiber. Note the cusp at A=5u.

PLOTS OF LOG(Teff(degq.K)) vy LOG(Jo(watts/cm~2))
incident radiations 18.5 micjons
alogous bjluckbody Hemperaturg

[
i
LB LA

ol

LR R

? L1l 1.1t 1Ll ||111[¥ Lt 111811 111
-1 8 1 2 3 4 S

Figure 2-9. Plots of Teff vs I° for the 1 micron radius graphite fiber.
A =10.7u.
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LOGCEMITTANCE, wattsr/em 2-micron) va LOG(WAVELENGTH, microns)

Effective Radiating Temp. = 2500 deg.K
Lamdatincident)=19.§ microns
Incident intensityed 4E+EY watts/cm~2

=~e-~Blackbody Spectrum

PRRAMETERS (mks):
Radius=iE-6 »
Length=1E-3 =
Cond.=1ES mhosm
Teu=1,35E-15 sec
a.f.p.=4E~-15 m
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Figure 2-10. Radiant emittance of the 1 micron radius graphite fiber.

Effective radiating temperature = 2500 deg. K.

LOGCEMITTANCE, wattz/cm~2-micran) vs LOG(WAVELENGTH, microns)

Effactive Radiating Temp.= 1898 deg.K
Landu(incident)=13.6 microns
Incidegt intensity=6.SE+D1 watts/em~2

~-~—~Blackbkody Spectrim

]

-1
PARAMETERS (mks):

-2 Radius=1E-6 m
Length=1E-3 m
Cond.=lES5 mho/m
Tau=1.35E~15 sec

! A f.p."4E~1S m
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Figure 2-11., Radiant emittance of the 1 micron radius graphite fiber.

Effective radiating temperature = 1000 deg. K.
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LOSCEMITTANCS, witts/cmr2=micron) ve LOG(WAVELENGTH, microns

) 1 Effective Radiating lemp.= SB8 dej.X
’ . Lamda(incident)=13.6 microns
Incident intaneity=S, 1E+88 vatts/cm~?
e! w=w~=Blackbody Spectrum
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! PARAMETERS (mks):
t Radius=iE~6 m

N Length=1£~3 m

’ Cond.=lES mho/m

! Tau=1.35E~15 sec
m. f.p.=4E~13 m
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o Figure 2-12. Radiant emittance of the 1 micron radius graphite fiber.
E . Effective radiating temperature = 500 deg. X.

LOG{EMITTANCE, watts/cm~2-micron) vs LOG(WAVELENGTH, microns)

Effective Kadiating Temp.= 308 deg.K
clident)=]0.6 micrcns
intensity=3.0E-01 wattss/cma2

~wu===Blackbody Spectrum

PARAMETERS (mksz):
Radius=1E-6 m
Length=1E-3 =
Cond.=1ES mharm
su=1.35E~-15 gec
f.p.=4E-1S m
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Figure 2-13. Radiant emittance of the 1 micron radius graphite fiber.
Effective radiating temperature = 300 deg. K.
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2.6.2 Iron

Also of interest are very fine filaments of iron. We therefure include herein
an example of the radiative properties of such a particle having a radius cf
100 Angatroms. For purposes of illustration of the potential for broadband

screening (via absorption), we have selected a filament length of 100 microns.

Figura 2-14 displays the absorption efficiency a3 o function of wavelength.
Nuote that the curve is quite simjlar to that Jor 100 Angstrom radius graphite

(see Fig.2-1), except that the maximum value of is 100X that for'

abs
graphite. This is beceuse the electrical conductivity of the iron is taken to

be ac-lo7 nho/m, while that for graphite was assumed to be 105 mho/m.

Ia Fig.2-15, we see that the plot of Teff vs 1, is essentially the same as
that for the 100 Angstrom radius graphite. This is because, as mentioned
previously, the shapes of the Qabs(A) curves (but not their magnitudes)

are the sama.

In Fig.s 2-16, 2-17, 2-18,and 2-19 the values of T pr are 1590 (the maximum
permissible), 1000, and 500 deg.K, respectively. The following comments are
of interest: <(1)The shapes of the radiation speccra are eséentially the
same as for the thin graphite example (Fig.s 2-4 through 2-7). (2). The
required incident intensity i, 1is nearly the same in ths irun vs graphite
cases (38 wvs 52 vatts/cmz at Teff-1500 deg.K)). The reason for this is
apparent from inspection of Equation (2-17). (3, The magnitude cf the

emittance is greater by a factor of ~100X for the iron vs the graphite.
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Figure2-14. Absorption efficiency factor vs wavelength for z 100 Angstrom
radius iron fiber.
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Figure 2-15. Plot of Tegg V8 I, for a 100 Angstrom irxon fiber. A,~10.64.
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Figure 2-16. Radiart emittance of ths 100 Angstrom radius iron fiber.

LOGCEMITTANCE, watts/em~2=micron) vs LOG(WRVELENGTH, microns)

Effective Radiating Temp.~ 1530 deg.X
Lamdu(incident)=10.6 microns
Inecident intenzity=3.8E+81 watta/em~2

«====Blackbody Spectrum

PARAMETERS (wmka):
Radius=1E-0 m
Length=iE—-4 m
cond.=lE? mho/m
Tau=4+E-15 sec
m.f.p.=3E-11l m

-2 dl ye?

Effective radiating temperature = 1500 deg. K.

LOG(EMITTAMCE, watts/em~2-aicron) vex LOG(WRVELENGTH, micrnns)

Effective Radtiating Temp.= 1808 deg.K
Lamde(incidant)=18.6 microns
t tntenstty=1,1E+81 wattsscm~2
te N mm—— Blackbody Spectrum
]
-1
PARAMETERS (mks):
-2 Radius=1E~8 m
Length=lE~4 m
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Figure 2-17. Radiant emittance of the 100 Angstrom radius iron fiber.

Effective radiating temperature = 1000 deg. K.
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LOGCENITTANCE, wattssem~2-micron) vs LOGC(WRAVELENGTH, microna)

Effective Radtating Tamp.= 508 ceg.K
Lamdalincident)=18.6 microns
Incident intensicy=1.0E+8R watta/cm~2

wem===Blackbody Spectrum

PARAMETERS (mka):
RadiusalE-8 m
Length=1E-4 mw
Cond.=1EY mhorm
Tau=4E-15 sec
m.f.p.=3~11l m

Figure 2-18. Radiant emittance cf the 100 Angstrom radius iron fiber.
Effective radiating temperature = 500 deg. K.

LOGCEMITTRANCE, watts/cm~2-micron) vs LOG(HAVELENGTH, microns)

Etfective Radiating Temp.~ 300 dag.K
Lamdalincident)=]3.6 microns
Incident intensity=1.4E-81 watts/cm~2 .
-1 ~——==Blackbody Spectrum
-2
=3
! PARAMETERS (mks):
! Radius=1E-8 m
-4 : LengthelE=¢ m
' Cond.=1E? mhos/m
H Y Tau=4E-1S sac
] \ m.f.p.=»3E~11 m
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Figure 2-19. Radiant emittance of the 100 Angstrom radius iron fiber.
Effective radiating temperature = 300 deg. K.
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2.7 Applications

In this subsection, we consider some interesting applications of the foregoing
treatment. These include various radiative and absorptive effects associated
with electromagnetic radiation incident upon aggregates of microscopic
absorbing particles. We will also consider the conditions required for
vaporization and/or melting of such particles. The envircnment is assumed to
be exoatmospheric. Before addressing these subjects, however, it is necessary
that wa digscuss the geometrical considerations which arise when the absorbing

particles are nonspherical and randomly orienced.

2.7.1 Geometrical Considerations
As already mentioned, the foregoimng analyses were carried out under the tacit
assumption that the particle axis is aligned parallel to the electric;field
vector E of the incident weave. This of course presents nc nroblen for
spherically symmetric particles. However, in the case of nonspherical
particles, we are interested in the ahsorption cfficiency factor, as &
function of the angle of incidence, as well as the polarization angle. We are

not permitted to take the average value cof Q (A,Oi). Instead, the

abs

asbsorbed power must be calculated using the quanti.y

cosz(a)Q (A,ai)-cosz(a)aabs(x,ai)/2alsin0i, where Bi-angle

abs
of incidence and a=~polarization angle. The thermal radiation on the other
hand, must be calculated as before, using the total particle area 2ral.

Each value of 8y will therefore give rise to a different radiation spectrum.
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As can be seen, the precise calculation of thermal radiacion from a small
ensemble 6f randomly oriented nonspherical particles involves a somewhat
different treatment than that c¢f Section 2.3. The following accounts for

arbitrary particle orientation in the rase of our E.Q.S. theory:

We firs. < that the absorption cross secciorn is proporticnal to the square
c¢f the component of the irncident E-field that is projected on the particle

axis. Thus, including peclarization angle a and the angle of incidence 4., .
¢ g g & i

rhe absorption cross section becomes
O be (@8 = 0,4 (3,0,7/2)cos2(a)sin2(4,). (2-19)

The absorption efficiercy factor is inversely proportional to the area of the
partirle, projected in the plane perpendicular to the incident k vector.

‘o Thus,
Qabs(x,a,oi) - aabs(x,a,oi)/Zalsin(ﬂi). (2-20)

i e Combining Eq.'s (2-19) and {2-20), the absorption efficiency tactor for

arbitrary particle orientation (E.Q.S. theory) is
Qabs‘A'a’oi) - aabs(x,O,n/2)cosz(a)sin(0i)/2a1. (2-21)

In che case of monochromatic incident radiation, the absorbed power is

‘,._: P&bs = IO(AO)APQabS(AO'a’ei)
L’

1
. Io(ko)Apaabs(Ao,0.#/2)0052(a)sin(&i)/Zal, (2-22) E
' )
d ¢ I
| |
1
|
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and, in the present nomenclature, the radiated power is

2
2xc’h
P._.= A|Q (2,0,x/2) ~dA. (2-23)
rad [ abs xs(e(hc/XkTeff) -1)
o

For cylindrical particles, A/Ap-Zral/Zal-«. For monochromatic fllumination,

an expression, analogous to Eq. (2-17), results from equating Eq.’'s (2-22) and

(2-23):

Qabs(AO.0,l/2)cosz(a)sin(01)

2
2xnc“h
- xla, _2,0,%/2)—= a. (2-24)
I abs 23 (eihe/ AT ) )
[+]

We see that Eq. (2-24) is transcendental with respect to the variables

a and 01.

The problem can be solved numerically as follows:

(1) Assume values of the intensity and wavelength of the incident beam. i.e.

assume that we know IO(AO).

(2) Successively increment the angles a and 01 to include all possible

orientations of the particle with respect to the incident E-vector.
(3) For each of the above angular increments, calculate L.H.S. of Eq. (2-24).

(4) For each above angular increment, solve Eq. (2-24) (by numerical iterative

74




means) to compute the correct value of Teff'

(5) Having obtained Teff' compute the radistion spectrum for that specific

combination of a and 01.

(6) Repeat steps (1) through (5) for each angular incrementation. Add the

spectral intensities (watts/cm?) according to wavelength for all angles.

The cbove procedure, using appropriate angular weighting (sin(ﬂi)) and
normalization for the numerical integration of (6), will yield the
orientation-aversged thermal radiation spectrum from our cylindrical
particles. With modification, the more exact Variational technique for

calculating Qabs can be used in the above method.

2.7.2 Aggragates of Absorbing Particles

In-ernally Heated Spherical and Cylindrical Clouds

We now consider the case of a cylindrical cloud of particles. Assume that the
source of illumination is uniformly distributed alcng the cylinder axis, and
that, for all wavelengths of inte:est, the product y(A)R>>1, where R=radius of
the cylinder, and y=absorption coefficient of the cloud given by

-1

1) = no ) W, (2-25)

where n=number density of absorbing particles (m'3).
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In this case, the input radiatiovn per unit axial length is simply
Pin(tot)/L. where ?1n(tot)—cot51 input power and L-=length ol ths cylinder.
The radiated power must equal the input puwer, and iz emit:ted over a surface,
or “skin" whose depth is approximately 7'1. The effective value of the
emissivity of the cylindrical cloud is just that of a blackbody. This is
because of the following argument: (1) Within the cloud (r<<(R-1'1) and

>y -1

), the particles are essentially in thermal equilibrium with their
neighbors and the radiation spectrum in such regions is essentially blackbody
radiation. (2) The effective number of particles that are radiating at the
surface at anry wavelength is N-nAcy(k)'l, where Apc-total cloud ares.

Thus, the larger Q (A) is at some wavelength, the smaller the number of

abs
radiating particles that are radiating from the "surface®" at that wavelength.
(3) Therefore, the radiation from the surface of the cloud will
be essentially blackbody radiation and the effective emissivity of the cloud

will be unity.

The radiating temperature Teff of tha cloud can therefore be found from the
following equation.

2
2xch
P, = 2=xRL dA. (2-26)
in IAS(e(hc/AkTeff) -1)

o

Knowing Toggr We can then calculate the radiation spectyrum from the

integrand of Eq. (2-25).

IZ the cloud were spherical, and the illuminating source were placed at the
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center of the sphere, then the same procedure can be used by replacing the

factor 2=xEL in Eq. (2-2€) by 4:&2. where in this case R=sphere radius.

This equation demonstrates an interesting (and potentially useful)
circumstance that an optically thick (yR>>1) absorbing cloud of particles will
radiate essentially as a blackbody whose surface temperature, and therefore

its radiation spectrum, can be controlled by its surface area.
Cylindrical Cloud; External Illumination
We next consider the case of an axially illuminated cylindrical cloud of

absorbing particles. This problem only has meaning if yR<<l. If, in addition,

yL>1, then the incident radiation within the cloud is given by

- -12 -2
Iinc(z) Ioe , (2-27)
vhere z is along the cylinder axis. The particles will radiats with
enissivity Q.b.(x)wbb(x,z). Thus, the radiation spectra of all surface

elements of length dz would be added according to wavelength. As long as the
above criteria on yR and yL obtain, the overall spectrum from the cylindrical
cloud will depend only upon Q‘bs(x).

If the y()A)L were <<1, then all particles would radiate in accordance with Eq.
(2-17), usirg Iinc-Io(Ao'), and e-Qabs(.\.).. In the case of axial solar
illumination, Eq. (16) is applicable here for computing the radiation

spectrum.
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Slab Geometry; External Illumination

The case of external illumination of a slab composed of absorbing particles
can be treated simply (see Ref. 24, p.513) using the diffusion approximation.

This is appropriate when 4r>>1 and when 9abs > where r=slab

9sca’
thickness. We further assume that Qabs(x) is fairly uniform over the
wavelength ranges of interest. The problem is to find the temperatures at the

illuminated front surface Teff(l) and at the back surface Teff(Z), which

is sssumed to be not illuminated.

Siegel and Howell provide a simple calculational procedure for the computation
of the above temperatures. Their results can easily be used in conjunction

with our computational methods to determine the radiation spectrum emanating

from both surfaces.

We first note that, if yr=e, no thermal radiation will occur at surface 2 and
the incident intensity Iinc must therefore be radiated from surface 1, which
will radiate as a blackbody. Therefore, the Stefan-Boltzmann law

(Irad-Io-aTa) to calculate the maximum temperature at surface 1. Let

this be Teff(max).

We now let yr be fairly large but finite. The temperatures at the two

surfaces are then given byza

Topr(1) = T pp(max) [((1/2)+(3/4)77)/(14(3/6)7r)1H/%, (2-28)

and

Tegr(2) = Topp(max)[(1/2)/(1+(3/6)yv) 1M/ %, (2-29)
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Equation (2-2) can now be used to calculate the blackbody spectra emanating
from the two surfaces. As long as the slab absorbs virtually all of the
incident radiation, the spectral distribution of this will not sensibly effect

the spectrc emanating from the two surfaces.

Incident Electromagnetic Pulse

There is interest in the interaction between an absorbing particle cloud and a
strong electromagnetic pulse (EMP). Assume that the pulse shape is square and
has a duration of 10 microseconds. This means that the predominant power in
the pulse is in the frequency range of from 100 kHz to ~500kHz (300m>A~>60m).
In order for the particles to be strongly absorbing at these and higher
frequencies, the electrical conductivity should not be excessive, and the
aspect ratio of the particle must be quite large. For example, if we wére to
select the 100 Angstrom icadius particle of Fig. (2-1) for this purpose, its
length would (from the E.Q.S. theory) have to be 22 mm and the filament would
have an aspect ratio of 103, If this could be accompliszhed, and if the
filaments were not aglomerated, this pulse would be strongly absorbed by a
cloud of such particles. The scattering would be negligible. The

temperature would, because of the small radius, be uniform throughout the

volume of each particle.
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Vaporization and Melting
Under conditions of extremely intense incident illumination, particles
composad of graphite will vaporize. Taking the vaporization temperature of
graphite to be 4200 deg.C =4473 deg.K, and using our first example (e.g. Fig.
(2-1)) of a thin absorbing graphite fiber, we find that the intensity of an

incident beam, of wavelength A =10.6u, is 1300 watts/cm2.

Sufficiently thin iron particles will melt under-much lower illumination
levels than give rise to the vaporization of the above graphite fiber. This
is because (1) the melting point of iron is lower (1808 deg.K vs 4473 deg.K),
and (2) a sufficiently thin filament of iron has a much larger absorption
efficiency factor. If we take the iron particle discussed in Section 2.6.2 as
our example, and x°-10.6p, we find that an incident intensity of only 65

watts/cm? is required to melt the subject particle in a space environment.

We believe that, upon melting, the iron filament would (due to surface
tension) form a spherical droplet. If this is ccrrect, the spherical

particle would no longer be highly abscrbing and would cool and solidify. It
is therefore not at all likely that any vaporization would occur in the case

of the iron particle, except in the case of extremely high intensity levels.
Ionization

For the vaporized graphite fiber, wa would have (we believe) a gas of neutral
carbon atoms. Assuming this to be the case, a £field strength on the order of

108 to 109 volts/cm would be required to give rise to field ionization of the

carbon atoms.
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If either of the above particles were present in a gaseous environment (e.g.
the atmosphe.e), field ionization of neutral molecules would occur at very
much lower incident field strengths. This is due to the fact that very
substantial enhancements of the incident E-field will cccur very near the tips
of the filaments. This integesting topic has been the subiect of considerable
in-house work at Panametrics. We might also note thet, if conductive highly
elongated particles were embedded in a solid dielectric, we predict that the
incident intensity level required to initiate dielectric breakdown would be

very substantially reduced.
Required Total Mass

Also of interest is the mass required to accomplish a given (dB) reduction in
intensity of an incident beam. This calculation is straightforward ir the

case of a slab geometry: The tocal mass, M in the aggregate is

tot’
ntot - Acnrvpp, (2-30)
where Ac-illuninated cloud area, n=number density of particles (n'3),

r=depth of the cloud (m), Vp-particle volume, and p=mass density of the

material comprising the particle. We note that (1) n=vy/eo , and (2) the

abs
one way (dB) attenuation (absorption) is given by (dB)=(2.3/10)yr. Combining
these and Eq. (2-28), we have the expression for the cloud mass per unit area

required to cause a given (dB) reduction of an incident beam:

utot/Ac - (2.3/10)(d8)pvp/aabs(ko). (2-31)
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2.8 Comments

‘The fdr.;eing discussions relating incident electromagnetic energy,

microscopic parcticle parameters, and the resulting thermal radiation were

undertaken to provide a gcnnrnl understanding of the important processes as

‘thsy relate to the physical parameters of the particles. The specific

problems discussed were chosen for mathematical simplicity and eass of
physical understanding. The standard textsz (e.g. Ref’s. 24 and 25) on
Radiation Theory can ba used in conjunction with the work of this Section in

the solution of more complicated problems - and there are many.

The thermal emissivity of small particles has been discussed by Kattawar and

Eilnorzs

who also, we note with pleasure, discuss the quantum mechanical
aspects of the eaissivity for small particles. Pluch1n027 has computed
enissivities (equal to Ubs and less than unity) of small layered spherical
particles. Our initial cbjective herein has been to address the question of
c(x)-Q.b'(x)>>1. We also note, however, that Bohren and Huffnan26 have
addressed this question and are in agreement with our conclusions that this

circumstance is perfectly reasonable. They also provide some interesting

historical aspects of the subject.

Other objectives of this Section have been to compute the appropriate
radiation spectra for various spoéific particles of interest, and to determine
means of computing the radiative propertiss of aggregates of broadband highly

absorbing particles under conditions of intense illumination.
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In connection with the work in this Section, we are most pleased to
acknovladge many interesting discussions with J. Yos, Avco/Textron Systems
Divisisn, with F. Morgenthaler, Massachusetts Institute of Technology, and

with I. Spain, Cclorado State University; G. Ka:ttawar, Taxas A&M University,

and with A. Pluchino, Aerospace Corporation.
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Appeondix A

SCATTERING BY CURVED CONDUCTIVE FIBERS

Prelimiaary Burvey

All the numerical results obtaimed by Panametrics to the
preseat time for soattering and absorption by comnductive fibers
have dealt with straight fibera. The question naturally arises
then as to .the effects of curvatnre of the fibers omn the

scattering and absorption efficienmncy.

A search of the literature reveals very little work on
curved wires: all of that, with twvo exceptions, involving
perfectly conduoting wires. The curved, perfectly conducting
wire was appareatly first considered by Abaroni in 1946.28 Hijs
squations were applied to vcircular 1o00p and spiral .ntonnaalﬁy
Mei.12 Ia 1956 Kouyoumjian comsidered back-scattering from
pecfectly cosducting circular loops.ll The tvo exceptions to the
perfectly conmducting case are the vork of Philipson, vwho
considered lossleds disleoctric 21130.39 and Acquista, vwho
considered vavy cylinders.30 1, both of these latter ocases,
hovever, the scatterer was takea to be only a perturbation on its
surroundings, so that a full integral equation approanh was not

reguirwed,

Ve have derived the integral equation for curved fibers,
haviag fiajte coaduotivity, from first principles. The asual
thia-wvire analysis invariably assumes that the electric field can
be expressed in terms of a current filament concentrated on the
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sxzis of the fider, and this is physically somewhat unsatisfactory

sspecially when, as in the pJresent case, we must work with both

slectric and magnetic fields at the curface of the fiber. We use
instead an approach based on Huygen's prinmciple,31 yhich states
that fields generated by the tangential components of E and H
(distributed along the surface of the fiber) must precisely
cancel the axial componeats of the incident electric field along

the fiber axis.

e
This results in an equation involving integrals of the two
; unknown functions E and H along the fiber. . Taking the thin—wire
%. limit where fiber radius is very small compared to incident
3 'nvoloi;th. the second of these integrals is fairly straight-
forvard, and for good conductors is interpretable as the field

®

due to a distridbution of surface currents. The first intogral

behaves differently, however. The kernel reduces to a delta-

function, resulting inm a term in E at the field point of
evaluatioan of the iategral equation. Surface values of E and H
can then be related by a surface impedance concept to finally

give a pure integral equation for the current.
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The Iategrel EBguationa

Yhen an incident electromagnetic field EiRC jlluminates a
body ian free space, the resulting fields are r2lated by Huygens'

principle, which states rigorously that3l

Eina(g_) - (1/4n) fodo'kﬁ' x By(z') g(kR)

E(r) outside (A-1)

-(1/4r) yx vxI do'in' x Hy(z') g(kR) = { . tneid
ns e -

The left-hand side (LHS) of this eguation conaists of the sum of
the eleoctric fields due to the incident wave and surface
distributions over the body of magnetic and electric dipoles,

respeccively.
Hero

s(kR) = (1/kR)eiXR, p = | - £'I| , (A-2)

where 1' and r are the source point and field poinat,

respectively.

Equation (A-1) states that the E field is given by the LHS
for all field points outside the surface. On the other hand, for
all field points yithin the surface the LHS vanishes identically,
i.0. the surface field distridbutions must precisely cancoel the

incident wave. This latter statement is sometimes known as the

extinoction theorem, or the extended boundary condition.




The extinction theorem is applied to the curved fiber, shown

in Fig. A=}, as follows. Let a = fibor radius, and p(s) = radius
of curvature as a functiom of position s along the axis of the

fiber. We assume that

| a/b < ¢ 1 (A-4)
ka ¢ <1, (A-S)

» i.e., the fiber radius is mucl less than the minimum radivs of
curvature, the fiber half-iength b, and free space wavelength k =
2n/A, respectively. We also assume the fibezr to have moderate to

h large conductivity, so that axial currents will be iunduced and
guided along the fiber.

P Now requiring that the axia) oompoment of Bq. {(4-1) vanish
along the fiber axis gives

L (1/4%) 8 - yx ij'dd' in' x Hy(zg') g(kR)

+(1/47) & -Vx!dc' kn' x B,(g') g(kR) = 8 - Bine(g) . (4-6)

Note that this equation is still exact, although we have only
used a portion of the information available. The curl operators
may be tsken under the integral sign, because the field point
n2¢d never anproach the fiber surfuce.
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Figure A-1.Geometry of the Curved Fiber.
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We suppose the magnetic field on the surface to be purely

azimuthal, 230 that

(A-7)

a' » Hy (g') = ¢ H(s') .

Using the identity ocurl ocurl = grad div - div grad, the first

integrand of Eq. (A-6) takes ihe form

s c vxvxa' x By (g') g(kR) = s « o -v-¥)s' H(s') g(kR)

~ H(s') 8 ¥ 3' g(kR) + k2(s-3') H(s') g(kR)

= H(s') (8.9) (8'-9¥) g(kR) + k2 (3 - 3') H(s') g(kR)

= -H{s') [32/3s0s"' - k2 (5 - s') g(kR) , (A-8)

where in the last step we have vied tho formal notation 8 V=

8/3s and 8' Y= -2/3s' for directional derivatives. The minus

sign ari..s in the latter case because the primary variable has

the form

R« r(s) ~ z(s')

For the second imtegral of Eq. (A-6), the elactric field on

the surface is assumed to be purely axial, i.e.




Now

Bi(g') = 8' EB(s') . (A-9)

-

-~

-s + (n' x E+) x Vg

+ Ox o' x Bye(r') g(kR)
= (a' x By) + (3 x wg)
= E(s') (n' x 8') - (3 x vg)
= ~E(s') (3 + 3') (n' . g5)

= -E(s') (3 ¢« %') (a' « R)kg'

=~ -B(s') (8 - 3') (a/R)kg' . (A-10)

Here in the fourth step wo used the identity

then noted that the scalar product n' - s vanishes identically

under the azimuthal portion of the surface integration. In the

last step above g'(kR) = dg/d(kR) and we have assumed that

P,

a' «- % = a/R . ' (A-11)

Hote from Fig. A-1 that this equality only holds when Is-s'| <<

i.e., for peints sufficiently close together alomng the axis

that the curvature cf the fiber has not come into play. No

S50
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spproximation is involved here, however, because the integral is

entirely negligible otherwise, as we will now see.
Using Bq. (A-10), the second term of Eq. (A-6) becomes

2x +b
-(x2/4x) ado’ ds' E(s')(s-3') (a/R) g'(kR)

0 -b

+b
= -(k/2) (ka)2 ds' B(s')(s-3') (1/kR) g'(kR)

-b

+o

~ (1/2)a2 B(o).l ds'[(s—2')2 + a2]-3/2 = E(s) . (A-12)

From the first step omne notes that because ka << 1 only that
portion of the integral of order (1/ka)®? will contribute to the
final result. Noting that

(1/kR) 5'(kR) % -(1/kR)3 = —(1/k)3 [(s-3")2 + a2)-3/2 ,
for kR (¢ 1, the remaining steps of Eq. (A-12) are straight-

forward,
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Putting the results of Eqs. (A-8) and (A-12) bdack in Bq. (A-

6) and ocarrying out the azimuthal integration, one finds that

+b

(1a/2) ds'H(s')[32/3s 3s'-k2(3-3')]) g(s,s') - EB(s)

= -3 +Einc (3) . (A-13)

¥We can express this result as an integral eguation for total line

gyrrent I(s) by writing
I(s) = 2nai H(s) , (A-14)

and introducing s surface impedance per unit length given by15

Z = -{wp/2naky) T, (kga)iTq'(kgs) (A-15)

Here kg = (uzpc + 1ups)1/2 is the complex propagation constant
within the fiber, J, is the Bessel function of the first kiad,
and w>» have assumed that both B and B within the fiber vary much
morxe rapidly in the radial than the axial direction. This
assumption is ocunsistert with the requirement of moderate to
large conductivity. Note, however, that if one were toc reproient

I°s) as a Fourier axpantion, them eventually the axial variations

of such terms would dominate, with the result that kg in Eq. (A-




15) wculd have to be modified.15 That is, the surface impedance
becomes depandent on the rate of axial variastion of curreat when

that rate is lazge.
The tangential R field ocen now be esxpressed as
E(s) = ZI(s) , (A-16)
and ucing this result, along with Eq. (A-14), one finally obtains

+b

(1/4xn) ds' I(s') [32,8s 3s' - k2(5°8')) g(s.s') - ZI(s)

= -3 - Bi®ne (g) . (A-17)

-

Note that for straight fibers 2-3' = 1 and this aquation reduces
to the ususl formula.3 Also for curved, perfectly ccnduoting

wires Z—0 anl omne again finds the acvepted formula. 12
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Approzimatioa feor Special Fiders

For the gemneral case, as describsd by the integral Eq. (A-
17), it 1ic clear that detailed numerical oo-pgt.tionn are
rtequired in order tn obtainm any explicit results. If the fider
axic has vadius of ovrvaturs large compared to wavelength, or is
made vy of a zigzag series of straight line segments, lowever,
then the absorption cross—-secticn is veadily approximated using

eatlier results.

First, oonsider the case vhere ths fidber axis curves oaly
slowvly and is relatively long, compared with wavelength. Then we
can use the infinite cylimder reszult to obtain the sbsorxrption
cross~section per unit lexgth o,/L, where this ratio is given by
Bq. (1-20). Note thut o, will be a fuaction of position s along
vhe ourved fiber, ia that o, depends oan the angle o, tor-o& by
the incident B vector and the local tangent to the fiber axis.

The total absorption cross—section 2:.5. is then given by

+b

.z:.b. = ‘[ ds (o, (s)/2]) . (A-18)
-b

It is now straightforward to obteinm results for toroidal or
C-shaped fibers, or other configurations meeting the slowly-

cnrving limitation, by numerical integration of Eq. (A-18).

For a fiber made up of z2igzag line segments, it is more
appropriate to emply the quasi—-static approximation to the
absorption cross-sectiom o,p, as given by Eq. (1-29)., We have
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already seen by ocomparisoa with nther ocomputatioms that this
formula 18 quite accurate for all fider lengths provided the
modified depolarizatioa faoctor L' of Bq. (1~31) is used for k & )
1.

Now for a fiber of N segmeants, lhavimg individual lengths l‘.
a =1, 2, ... , N, the total absorptioa cross-section z.b, is

givea simply by

N
Z.b. - E (l.h. (l‘) .1-2 0‘ » (A"l’)
a=]1

where the factor 31229, (angle betweea imcideat B veotor amd ath
segmeat axis) is imocluded becamse tho origimal Bg. (1~29) was

spocitioally for broadsido imoideace.

It is neefaul to mote that for both Bqs. (A-18) amd (1-19)
the cross-seotion E.b. is a liaesr swm of the cross—sections of
individual segments. Beocause cach such segaent dehaves precisely
as a straight fider vuvrdar orieatation avox:!_in.. oas coacludes
that the orieantatiom-averaged cross—seotion E,b. for the cusved
fiber will be just equal 20 that of a straight fidber cf the same

total leagth.
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Appendix B
TARGRT OBRCURATION

Ia this section, taking iato coasidsratioan bdoth the diffuse
cloud scattering properties and the beam e¢xtinction properties,
one requires the optimum coaditioas for iarget obscuration from a
mnass effivciency stamdpoiat, over a wavelength range where the
theory is belisved to be most accurate. It is appropriate to
employ the quasistatic approximatioa, is which partiocles are

assumed to be small in comparisom with semsor weveleangth,
Coasider the situatioa whea a target of (radar or optical)
6ross—ssction o7 is partially comcealed by s clomd of particles,
the clowd having az imcohereat ocross-sectition z:c, Because of
this incoherence, the croass-sesctions are sdditive and one has

Observed ocross-sectioa = 2:° + o o"2YT (B-1)

where Yy and v are the Jdecay comstast and thickness of the clound,

respectively.
Wo now assume that the sensor ggpnot dotect the targot if
2:, 2 Koy o277 (B-~-2)

where Kk is a figure of mrrit, eo.g. for kK = 0.1 the signal from

the tazget would be 10 dB dowa in ths ''mno1se’ of the cloud
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retura. The diffuse scatterimg from the cloud bhas sarlier been
computed to bed2.33
A k 3)
o 0 .
Zc " o—_ Vy o . (B-3)
v /T

where V, is simgle-particle volume, the redmced conductivity is

sivea by o' = kgs = JQ,;., 6g (ia terms of comduwctivity, or the
imaginazy part of the relative dielectsic coamstamt), amd A  is
the goometrical ocrose-sectiom of the cloud, or the semsor bdeanm
cross—-section at the cloud, if the latter should be smaller.
Using this result, and takiag the equality ia Bq. (B-2) then

gives

AO k°2) ]
f_;— —-a—i' vp Ce = K gT .-21t . (B-4)

The decay ccnstant for the clowd is givea by

in terms of the numbher density of particles amd the oriemtation-
averaged extimctiom oross—-sectioa per particle. Assuming that

absorption ef fects dominats, one has

c VvV

[~} P '
Begxt & Tabs & S @ Vpl/3 (B~6)
ox e 301 + (Le )2) ° F

where in the next-to—last step the quasistatic approximation was
employed, and in the last step we noted that optimun abdbsorption

will occur when




Le" = 4(a/8)2 [ a(l/a) -11 " ¢¢ 1 (B-7)

(L is the depolarizing factor). Note alsc that the totsl mass M

of particles ocaa be written

N=p Vy Bx Ag . (B-8)

Baploying Bqgs. (B-5), (B-6) amd (B-8) im Bq. (B-4), and taking

the logarithm of the result determines the roequirned mass to be

I P A o

30, l_[ sV ("‘r)].

The quantities K, o1 and Ay are prescribed by the logistics of
the task at hand. Thus, to minimize M one first must seecl s
matorial with smallest possible valwe of the ratio p/cc'. Ia
additioa, it is desirable to obtaim as large a value of the

product koz V’ cc' as possible, in order to minimize the loga-
rithmic term in EBq. (B-9).
For conoretensss, supposs that

Le'"= 0.1 ,

kol = 0.1 . (B-10)
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From Eq. (2-7) we ther find that

0.01 (L/a)
4 o' [(Ln(L/a) -1] )

a = (B-11)

This oguation can be used to drtermine particle radius, once the
length and condmnctivity are knowan. Typical particle design

patametors can now be listed:

s) mjcrowave region
Yy = 3.x 10-2 n
L = 4.8 x 104 n
6c = 5 2105 mho/m

e = 2,2 x 103 g

b) infrared region
Yy =3 x10°35 a
L = 4.8 x10°7 u
6c = 1 x 104 mho/m

a=1.0 x 10-8 g
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Appendix C
TAILORING OF PARTICLE PARAMETERS FOR SPECIFIC APPLICATIONS

(The discussion in this Appendix was done during 1985 as
part of the effort of the first year of the Program. The
theoretical and computational techniques, as described inm Section
1 of the pressent report, have been significantly improved since
that time,. Howevey, this Appendix is included im order to

demonstrate the approach we have devised for this application.)

It is the purpose of this section to demonstrate the tech-
nigques Lty which the parameters (length, radius, and conductivity)
of thin condactive fibers canms be adjus.ed so that a clond;of
these particles will have selected spocified spectral charao-
teristiocs. These characteristics are: (1) large absorption and
small scattering, (2) large scattering and low sbsorptioa, and
(3) transparency. Two frequencies vere arbitrarily chosen for
the cases to be analyzed. These are f; = 1010 Hz and £ = 1012
Hz, corresponding to wavelengths of 3 cm {(microwave) and 300

microns (infrarxed).

The analyses to be discussed will be based on our ‘'‘extended
quasristatic model', the basis of which is described in Section
1.3. Ar demonstrated im Sectiom 1, this anmalytical model
produces results which are in surprisingly good agreement with
the results obtained using the much more rigorous variational
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technique of Section 1.2. To be more oxplicit, ithe quasistatic
model can be used to calculate the absorptior crcss sectiom over
a very wide range of k,f, including kol >> 1. The scattezing
cross section ocompuntations rasulting from tie quasistatic model

? are valid only in “he rengs kg £ ¢ =.

In all of the cases analyzed, the results cf the quasistatic
caloulations are directly compared with the corresponding results

of ths variational technique. Ve find these comparisons to be

quite remarkable.

k2

101

WA WSRO WRTWLE M A AN AU AT A e S TN P R R A TR



Coastitutive Equations

In adéition to the equations of Sectioms 1.2, 1.4 and 1.5,

the folloving equations are utilized in the foregoing analyses:

Orieztation-averaged absorption cross-section

(sec Eq. 1-29):

Tabs = (3) Oabs (c-1}

Orientation-averaged scattering cross-section (see

a‘o‘ = (;) CGgon (c-2)

High frequency depolarizing factor (see Eq. 1-31):

k a 2

L' = 4 (—3—) [La (—l‘—) -1] (kgl ¢ n) (c~3)
o8

The inclusion of the above equatiom pormits extension of the
3alculaticn of absorption cross section woell into the k2 0> 1
regime. Due to this, we refer to the present thaory as the

'"" extonded Quasistatic theory.'

In this treatront, we are using the Drude (froe eolectron)
model for the complex dielectric constant (Section 1.4) and fhe
Fuchs aodel for the dependenmce of conductivity on perticle
¢imensions, and we have purposely chosen frequencies w; and wy
such that possible anomslies due to these do not appear. Also,
ior purposes of analysis, wo can make the simplification & =
is'', The ocompater prograa, however, does not utilize this
simplificaticu.

L2
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&

Abgsorh at 3 em, Rofleet at 300 misrons

These oritecria lead to the following mathematical

statements:

At frequency w3 = 2x x 1010 Hy

3
—sp (1) . (C-4)
3, (2)
P
8. (1)
Let 5—2———» = .01 (C-5)
sp (2)
(Le' (1))2 << 1 » (C-6)
Let Le' (1) = 0.1 (C-17)

Equation (C-7) easures that the absorptiom ocross socgion
will be at its mazimum value st frequency w;, but wili be reduced
by a large faoctor at frequency w3 = 2x x 1012 H:z., Alse, we know
that the scattering cross section will be at least as groat at wy

s at w3. This will ocauso 0gg,(2)/0apg(2) to o0 large, which is

what we seek at wy.

From BEqs. (C-5), (C-7), (C-1), and (C-2), wo obtain (with
the appropriate dofimnitive equations of 8ectiom 1.,3) egqustions

for the conduotivity o5, radius a and length £:

- .ocz(.03)2/3 (C-8)
o 2 X 173 ’
wg & {10 [4&n (:) -11}
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1/ | 1/2
v a = [] (.“3) ( 0) - (C"")
s w3010 (22 ) 111 S (g 12
/ c 1/2
‘ L = 2a 10{[&a (5) -1} S ) (C-10)
b L] ®] 8o

when Egs. (C-8) and (C-9) are equivalent, i.e., we can choose &

conductivity and solve for a, or choose a radius, a, and solve

for the conductivity o,. Ve will do the former. Knowing both a

N 2

and ag, we them czlculate the length from (C-10). Note that the

(C-9), and (C-10)

L term in sguare brackets in (C-8), is very

insensitive to large variations ia (&/a). This is especially
true wvhen it is raised to fractional powers ia (C-8) and (C-9).
Therefore, we oan come quite close to the desired results if we

P’ cimply let [ ] = 2.5, This permits direct estimation of & and £,

given a preselected value of o,

Table I
Cond = 1,00E+04 Radius - 8.68E~-06
Length = 3.71B-03 ko(1)L/2 = 3.88E-01
™Y Cond = 1.00E+0S Radivus - 2.75EB-J6
Length = 3.71E-03 ko(1)2L/2 = 3.88E-01
Cond = 1.00B+06 Radius - 8.68E-07
Length = 3.71E-02 ko(1)L/2 = 3.88E-01
b Cond = 1.00EB+07 Radius - 2.75E-07
Length = 3.71E-03 kg(1)L/2 = 3.88E-01
Cond = 1,00E+08 Radius = 8.68E-08
Length = 3.71E-03 ko(1)£/2 = 3.88E-01
Cond = 1,00E+09 Radius - 2.75E-08
Length = 3.71E-03 ko(1)24/2 = 3.88E-01
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The above procedure leads to sets of permissible parameter
values, as oxemplified in Table I. Substitution of the various
pirn-oto: sets into the computer program ylelds graphs such as
showa ia Fig. C-1. Since these graphs are jdentical over the
vavelength range 300 miocroms to 3 ocm, only one is shown, This
figure is representative of a fairly highly conducting metal
(bulk comductivity = 107 mho/m). The relaxation time © is that

of copper.

From Fig. C-1, we see that (1) indeoed, the absorption oross
seotion peaks at very nearly the wavelength A; = 3 om, (2) that,
in the case of absorption, the extended quasistatic theory is in
excellont agreement with the variational theory for vavelengths
greater than abdbout 50 micronms, and (3) the scattering as
csalculated from both theories is im excellent agreement vwhen

ko2 L1,

We further conclude that the mathematiocal ''design’'’
procedure demoastrated in this sub-section, although not
analytically exact, provides good parametric sets for the
solution of the stated problem, since the objectives are met at

the (wo specified wavelengths,
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PLOTS OF ELECTROMAGNETIC CROSS SECTIONS VS WARVELENGTH

18 1S Untts
Filad i3
Plot_v_q
4 Nov 1985
g A - —
-~ | Backscatter ((v)
, NI
2 \J W
3
}; Scattcringm\ﬁ]v V \
3 ) f\
Scattering (e.q.s)
. > / A ! N V
8 ANA \/J\/I
5 4 Absorptich (V)
A / — Abwrpti.I (e.q.5.)
s x/
S //
-8

Figure C-1.

-5 -4 log(iwmda) -3

An example of predominant absorptiom at A = 3 cm

and predominant scattering at 300 micrenmns.
variational

Quasistatic

Theory.
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Absezd at 3 em, Adseord at 3OO mierons

We have quite differeat criterxia for this prodlem as
compered with the yreceding problem. Here, we wish to have a
veory highly absorbing clouvd which has low scatterimg cross

sectioa.

Ia this case, the cloud scatteriag cross sectioa 2:,. is
given by

2, = g (5—_%%) , (c-11)

where A, = projected azes of the cloud or that portiom thereof

which ococupies the solid angle of the imncideat beanm.

Obviously, we wish to make the sbsorptioa cross sectioa of
the particle much larger than ite soatteriag cross sectioa. This
must be true over at least the wavelength range from 300 microns

to 3 onm.

The above comnsiderations lead to the followiag mathematiocal

criteria:

(1) In order to have maxzimum absorption over the specified
wavelength range, we want Ls'" (1) << 1 gnd Le' (2) <X
1. This wmeans that the particlos should be very thin

and (perhaps) not too highly coandmeting,
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(2) Sisee, ander the above coanditioms, ®yq, ~ ko2 V,z oo
and Wy ~ Vp g, the ratio (V,054/3,34) is proportional
to ko3 V, e¢. Therefore, ia orier to maistain high
cloud abdsorption and lov oclowd scattexiag, we wish to
keep the produoct V, ¢, lov (wve have a0 comtrol over

ko)o

A little bit of exzperimeatiag witkh the extended guasistatic
(BQ8) computer program yields appropriate sets of parameters.
The pazameter set correspoading to mimimal total mass ts a = 100
Augstzoms, £ = 100 microas, ard o, = 106 mho/m as the ®u'k
soadustivity. The ri.sults of usiag these parameters ia the
BQS and variatioaal codes are showa ia Fig. C-2. One cvan trade
off » lazger rodius for a lower coamductivity aad achieve similar

resuits, bPut with a somevwhat higher ratio of (8,,,/T4y,).

Note agaia tht¢ rcaarkadle agroonsat detveon tha computatioas

Pased oa tut tvo iadeyondcat theories!
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PLOTS OF ELECTROMAGNETIC CROSS SECTIONS VS KAVELENGTH

? LKS Unita
Fila® 18
Plot_v_q
\ 4 Nov 198%
s \ ~ - a? |
"g' ‘ ——— Abspr ‘tion (v)
- Abc}:pcion (e.q.3.)
§ /
s "—,‘—BCCKBcltt © (v)
® \ Scaicering (v)
4 V4
3° = ;
-.é PRARAME TERS
- radius=|E~-@?
length=1E-@4
3 \ tau=1,9E~14
Ne.pts. =130
tering (e.q.s.) min lam=1E-08
|nlx lam={£-81
e
-6 -S -4 logtlamde) -3 -2 -1
Figeure C-2. Aa example of brosdbanmd sbdasorption at 3 om anmd 300
microns. v = yariatioaal techmigue; e.qQq.s. =
Exteandad Q asistatioc Theory.
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Refliesting Nedeo

It ie easy to desiga particles haviang very low absorption
and relatively high seatteriag. BRxperience has showa wa that if,
for example, we oloose 8 higlhly coaductiag metal sweh as eopper
or sluminws, and seleoct s radius of oae microa or greater, the
partiele will Ve essentially sompletely reflectiag for at lsast
sl]l waveleagths bdelow 30 microms. Ve cam tailor the scatteriag
oross sectioa to bdecome proporticasl to w4 at wavcieagths sigaif-
isantly below that for whieh ko 8 = 1, which of course, represeats
Rayleigh scatteriag from ‘'perfectly ocoaductinmg'® wises. Thus,
the aggregate of particles caa easily be made to be reflecting at
oae wvaveleagth and easseatially traamspareat at some (signiti-

caatly) lower wavelemgth. Clhaff clowds dehave ia this way.
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Trzanspazreat at 3 em, Absord at 300 Riereans

Ia this ocase, we want the socatteriag ocross section to be
much lower thaa the adsorptioa cross sectiom at 711l wavelenmgths
sader ocomsideration, The reguirements dwe to this and the

trassparency oriterion at w3y are given below:

(1) Make V, o as small as possible, comsisteat with the

other oriteria,
(2) NMake Ls ' =1 at w3.
(3) Make k2 < 1 at w3,

Application of these criteria leads to the parameters listed
in Figure C-3. Note that, st A = 3 om, the adsorption is t‘roo
orders of magnitude lower thaa that at A = 300 eicroas. The
seattoriag thromghout the wy to w3 spectrum is much lover thans

the absorptioa.




PLOTS OF ELECTRGMAGNETIC CROSS SECTIONS VS WRVELENGTH

8 IKS Unitx
File® 1
Plot_v_q
4 Nov 1985
b e —
®
> Absorpripn (e.q.s.)
ot Absorptipn [v) \S;
g © 7
S
©
Scattering (v
f \ : Backscur.:r (y) )
Scatterin €.q.8.
»
g3 77 7 =
) PRRAMETERS
2 \]rdius=1E-02
- sngth=2E-@S
4 - +
[ tal=1.9E-14
|Ne .
min
max
k=PI
3 1
-6 -5 -4 log(lamda) -3 -2 -1
Figure C-3. An ezample of tramsparenmcy at ) om aad predomingnmt

absorption at 300 microas.
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(1)

(2)

(3)

(4)

Comments Relative to Partiele Parameter Tailoriag

Our eoextended quasistatic treatmemt provides a very
useful tool in the design of particles for specified
applications. In some instances, the EQS theory does
not yield accurate quantitative datas and skould be used
primarily as a first step to be followed by the full

computation using our Variatiomnal method.

The calculation of scattering cross sections using the
EQS theory is limited to the range ky8/2 ¢ 1, so the
variational techmnigue must be emyloyed beyond that

point.

We have included backscatter cros3s sertion computations
in Figures C-1, C-2 and C-3 for those applications that

require this.
Within the bounds of presemt techmology, it is possible

to create particle pirameters that conld provide useful

spectral characteristics over a wide wavelength renge.
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